期刊文献+

基于小波-神经网络的矿用通风机故障诊断研究 被引量:23

Study on the mine ventilator fault diagnosis based on wavelet packet and neural network
下载PDF
导出
摘要 运用小波包频道能量分解技术提取了不同频带反映矿用通风机不同工作状态的特征向量,以此作为BP神经网络的故障样本,经训练的网络作为故障智能分类器可对通风机的工作状态进行自动识别和诊断.研究结果表明,小波包与神经网络相融合的故障诊断与识别技术发挥了两者的优点,是提取机械故障特征进行设备状态自动识别的有效方法. Which reflects different working state of ventilator,was extracted from different frequency segment with the technology of wavelet packet frequency segment power decomposition, and taking it as input fault sample of BP neural network.The trained network, as fault intelligent classification, has very strong identification capability, which can identify automatically the working state of ventilator.The result of research shows that the fault diagnosis and identification technology,based on syncretizing wavelet packet and neural network, exerts their strongpoints, and it's a effective method of extracting mechanical fault characteristic and auto-identifying equipment's working state.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2004年第6期736-739,共4页 Journal of China Coal Society
基金 河南省科技攻关项目(0424260115)
关键词 小波包 BP网络 通风机 故障诊断 wavelet packet BP network ventilator fault diagnosis
  • 相关文献

参考文献1

  • 1Du R.Feature extraction and assessment using wavelet packets for monitoring of machining processes[J]. Mech.Syst.Signal Proc., 1996, 10(1):29-53.

同被引文献125

引证文献23

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部