期刊文献+

用于活体人眼视网膜观察的自适应光学成像系统 被引量:45

A Small Adaptive Optical Imaging System for Cells of Living Human Retina
原文传递
导出
摘要 利用自适应光学技术 ,研制了两套活体人眼视网膜高分辨力成像系统 ,在实时校正人眼波前误差的基础上 ,实现活体人眼视网膜细胞尺度的高分辨力成像。这两套系统分别采用 19和 37单元小型压电变形反射镜作为波前校正元件 ,哈特曼夏克 (Hartmann Shack)波前传感器测量波前误差 ,用眼底反射的半导体激光作为波前探测的信标。在用计算机控制自适应光学系统实现人眼波前误差校正后 ,触发闪光灯照明视网膜 ,用CCD相机记录视网膜的高分辨力图像。校正后的残余波前误差的均方根值已分别小于 1/ 6和 1/ 10波长 ,相当于视网膜上成像分辨力分别为 3.4 μm和 2 .6 μm ,接近衍射极限。试验表明 37单元系统的成像质量更好。 By using adaptive optics technology, two sets of high resolution imaging systems for living human retina have been developed. High resolution imaging of living human retina in scale of cell is realized. In these systems, two novel types of 19 and 37 element small PZT deformable mirrors are used as wavefront correctors respectively, wavefront errors are measured by Hartman-Shack wavefront sensors, light of diode laser reflected from the eye retina is used as the beacon for wavefront sensing, After the wavefront error of human eye has been corrected by the adaptive optics system under the control of a computer, a flash lamp is triggered to illuminate the retina, the high resolution images are captured by a CCD camera. The residual errors are less than \{λ/6\} and \{λ/10\} respectively. The corresponding resolutions at retina are \{3.4 μm\} and \{2.6 μm\} respectively, approaching the diffraction limit. Experiments show that the resolution of the 37 element system is better than the 19 element system.
出处 《光学学报》 EI CAS CSCD 北大核心 2004年第9期1153-1158,共6页 Acta Optica Sinica
基金 国家自然科学基金 (6 0 14 80 0 1) 国家 86 3计划 [30 8 15 0 4(2 ) ] 中国科学院知识创新工程 [(1999) 10 8]资助课题。
关键词 自适应光学 视网膜 高分辨力成像 变形反射镜 哈特曼-夏克波前传感器 adaptive optics retina high resolution imaging deformable mirror Hartmann-Shack wavefront sensor
  • 相关文献

参考文献13

  • 1Babcock H W. The possibility of compensating astronomical seeing. Publ. Astron. Soc. Pac., 1953, 65:229-236.
  • 2Jiang Wenhan. Adaptive Optics Technology. In: Modern instrumentation technology and Design (现代仪器仪表技术和设计), Wang Daheng, Ding Xianhua ed.. Science院Press, 2002. 1049-1114 (in Chinese).
  • 3JiangWenhan.Adaptive optics correction in real—time for dynamic wavefront errors[J].光学学报,1988,8(5):441-447.
  • 4Jiang Wenhan, Li Mingquan, Tang Guomao et al..Adaptive optical image compensation experiments on stellar objects. Opt. Engng. , 1995, 34(1): 7-14.
  • 5Jiang Wenhan, Li Huagui. Hartmann-Shack wavefront sensing and wavefront control algorithm. Proc. SPIE,1990, 1271:82-93.
  • 6Liang J, Grimm B, Goelz S et al.. Objective measurement of the wave aberration of human eye with the use of a Hartmann-Shaek wave-front sensor. J. Opt. Soc. Am.(A), 1994, 11(6): 1949-1957.
  • 7Liang J, Williams D R, Miller D T. Supermormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. (A), 1997, 14(11): 2884-2892.
  • 8Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. Appl. Opt., 1997, 36(7): 1517-1524.
  • 9Vargas-Martin F, Prieto P, Artal P. Correction of the aberrations in the human eye with liquid crystal spatial light modulators: limits to the performance. J. Opt. Soc.Am. (A), 1998, 15(9): 2552-2562.
  • 10Zhu L, Sun P C, Bartsch D U et al.. Adaptive control of a micromachined continues membrane deformable mirror for aberration compensation. Appl. Opt., 1999, 38(1):168-176.

同被引文献420

引证文献45

二级引证文献395

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部