期刊文献+

医学多变量重复观测资料的随机系数模型 被引量:4

Multivariate random coefficients model of repeated measures data in medical research
下载PDF
导出
摘要 目的 :研究医学重复观测数据的多变量随机系数模型 .方法 :对两种药物 (A药 :消瘾扶正胶囊 ,B药 :可乐宁 )治疗 12 0例患者后的舒张压和收缩压重复观测数据进行多变量随机系数模型分析 ,对模型系数的固定效应参数矩阵 ξ作最小二乘估计并进行组间比较 ,同时估计随机效应的方差 协方差矩阵 ,分析方法用SAS/IML软件编程得以实现 .结果 :得到了固定效应和随机效应有关参数的估计值 ,并给出了曲线图 .用药后患者的舒张压和收缩压随时间的变化而变化 ,且两个药物组曲线的变化趋势是不相同的 ,A药组的变化相对平缓 ,而B药组起伏波动较大 ,用药后A药组的舒张压和收缩压相对来说均较B药组为高 .结论 :多变量随机系数模型可有效地进行多变量重复观测数据的动态变化趋势分析以及随机效应分析 . AIM: To study multivariate random coefficients model of repeated measures data in medical research. METHODS: Both diastolic and systolic blood pressures repeated measures data, collected from 120 drug abusers after taking two kinds of medicine (Drug A: Xiaoyinfuzheng, Drug B: Kelening), were analyzed by multivariate random coefficients model. The fixed effect parameters matrix x of model coefficients were estimated by using least squares estimation method, the effects between treatment groups were compared and the variance-covariance matrices of random effect were also estimated. Related analysis methods were programmed with SAS/IML code. RESULTS: Estimated parameters with fixed effect and random effect were obtained and graphs were drawn. Both diastolic and systolic blood pressures changed with time after treatment and the trends between treatment groups were different. A slow change was observed in Drug A group, while a greater curvature was found in Drug B group. Both diastolic and systolic blood pressures in Drug A group were higher than those in Drug B group. CONCLUSION: Multivariate random coefficients model can effectively analyze the dynamic change trend and random effects of multivariate repeated measures data in medical research.
出处 《第四军医大学学报》 北大核心 2004年第23期2182-2185,共4页 Journal of the Fourth Military Medical University
基金 国家自然科学基金 (3990 0 1 2 6) 陕西省自然科学基金(2 0 0 3F1 1 )
关键词 重复观测 随机系数模型 多元统计学 repeated measures random coefficients model multivariate statistics
  • 相关文献

参考文献8

二级参考文献14

  • 1陈长生,徐勇勇,曹秀堂.医学研究中重复观测数据的统计分析方法[J].中国卫生统计,1996,13(6):55-58. 被引量:29
  • 2陈长生,徐勇勇,曹秀堂.不等距重复观测数据组间比较的正交回归模型[J].中国卫生统计,1996,13(3):1-5. 被引量:10
  • 3徐勇勇,中华预防医学杂志,1991年,25卷,306页
  • 4Chen C S,第四军医大学学报,2000年,21卷,1期,15页
  • 5Chen C S,第四军医大学学报,2000年,21卷,6期,673页
  • 6Chen C S,第四军医大学学报,1998年,19卷,5期,581页
  • 7Chen C S,中国卫生统计,1998年,15卷,6期,5页
  • 8Chen C S,中华预防医学杂志,1998年,32卷,4期,245页
  • 9Chen C S,数理医药学杂志,1997年,10卷,3期,227页
  • 10Chen C S,中国卫生统计,1996年,13卷,3期,1页

共引文献19

同被引文献16

  • 1李文潮,赵东涛,赵清波,王连昌,张辉.催化模型拟合中感染力的选择与计算[J].数理医药学杂志,2007,20(2):135-136. 被引量:2
  • 2高峻,董伟,高尔生,赵耐青.多结局生存分析模型与Cox模型的随机模拟比较[J].中国卫生统计,2007,24(3):248-250. 被引量:9
  • 3何尚浦.流行病学进展[M].北京:人民卫生出版社,1981.256-273.
  • 4徐勤.简单催化模型在日本血吸虫病流行病学上的应用[J].中华流行病学杂志,1985,6(6):351-352.
  • 5P Hemyari. Robustness of the quartiles of survival time and surviral probability. Journal of Biopharmaceutical Statistics, 2000, 10:299-318.
  • 6高惠璇,编著.统计计算.北京:北京大学出版社,2003,173-221.
  • 7A Burton, DG Altman, P Royston, etc. The design of simulation studies in medical statistics. Statistics in Medicine, 2006, 25 : 4279-4292.
  • 8高惠璇.SAS系统SAS/STAT软件使用手册[M].北京:中国统计出版社,1995.
  • 9Khattree R, Naik D N. Applied Multivariate Statistics with SAS Soft- ware[ M]. 2nd ed. Cary: SAS Institute Inc,1999:294-297.
  • 10Vandenbroucke JP, Koster T, Briet E, et al. Increased risk ofvenous thrombosis in oral-contraceptive users who are carriers offactor V Leiden mutation. Lancet, 1994,344: 1453-1457.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部