摘要
本文首次研究由连续局部鞅驱动的完全藕合的正倒向随机微分方程的比较定理 .首先考虑对正倒向随机微分方程中的倒向随机微分方程的终端的比较 ,得到定理 3.1,说明倒向随机微分方程的终端值越大 ,其初始值越大 .然后研究对正倒向随机微分方程中的正向随机微分方程的初始端的比较 ,得到定理 3.3,说明正向随机微分方程的初始值越大 ,倒向随机微分方程的初始值也越大 .
The paper first studies the comparison theorem of fully coupled Forward-Backward Stochastic Differential Equations(FBSDE) with general martingle using pure probabilistic method. First we consider the terminal value comparisom of BSDE of FBSDE and get the Theorem 3.1, which means the initial value increases with the terminal value of BSDE. Then we study the initial value comparisom of FSDE of FBSDE and get the Theorem 3.3, which means the initial value of BSDE increases with the initial value of FSDE.
出处
《山东大学学报(工学版)》
CAS
2004年第6期99-105,共7页
Journal of Shandong University(Engineering Science)
基金
山东大学威海分校资助项目
关键词
倒向随机微分方程
局部鞅
鞅的可料表示性
backward stochastic differential equation
local martingale
the predictable representation property of martingale