摘要
路径约束最优轨迹规划的关键是引入标量路径参数来降低优化问题的维数 .当路径穿越奇异点时 ,由于关节位移难以表示为任务空间路径参数的解析函数 ,给常规的路径参数化方法带来困难 .本文引入一种新的参数化方法 ,采用路径跟踪方程解曲线的弧长为参数 ,解决了奇异点邻域的路径跟踪问题 ,把奇异路径轨迹规划转化为常规规划问题 ,并采用动态规划方法求解轨迹规划问题 .仿真表明 ,本文提出的参数化方法与动态规划结合起来 。
Key to the path constrained trajectory planning is to introduce a path parameter to reduce the problem into a low dimension one. While the path passing through singularities, joint variable can hardly be presented as analytical functions of task space defined parameters, which causes difficulties given to conventional trajectory planning. In this paper, a new parameter, arc length of the solution curve to the path tracking equation, is introduced. Based on this, the path tracking problem near singularities is addressed, and singular path constrained trajectory planning is transformed into a standard optimization problem, which can be solved by dynamic programming. Simulation shows the parameterization combined with dynamic programming performs effectively in singular path trajectory planning.
出处
《机器人》
EI
CSCD
北大核心
2002年第6期550-553,共4页
Robot
基金
国家 8 63资助项目 (编号 :863-70 4-7-17)
关键词
奇异点
奇异路径
最优轨迹规划
动态规划
kinematic singularity, singular path, optimal trajectory planning, dynamic programming