期刊文献+

机器人操作臂奇异路径约束最优轨迹规划 被引量:1

SINGULAR PATH-CONSTRAINED OPTIMAL TRAJECTORY PLANNING FOR ROBOTIC MANIPULATORS
下载PDF
导出
摘要 路径约束最优轨迹规划的关键是引入标量路径参数来降低优化问题的维数 .当路径穿越奇异点时 ,由于关节位移难以表示为任务空间路径参数的解析函数 ,给常规的路径参数化方法带来困难 .本文引入一种新的参数化方法 ,采用路径跟踪方程解曲线的弧长为参数 ,解决了奇异点邻域的路径跟踪问题 ,把奇异路径轨迹规划转化为常规规划问题 ,并采用动态规划方法求解轨迹规划问题 .仿真表明 ,本文提出的参数化方法与动态规划结合起来 。 Key to the path constrained trajectory planning is to introduce a path parameter to reduce the problem into a low dimension one. While the path passing through singularities, joint variable can hardly be presented as analytical functions of task space defined parameters, which causes difficulties given to conventional trajectory planning. In this paper, a new parameter, arc length of the solution curve to the path tracking equation, is introduced. Based on this, the path tracking problem near singularities is addressed, and singular path constrained trajectory planning is transformed into a standard optimization problem, which can be solved by dynamic programming. Simulation shows the parameterization combined with dynamic programming performs effectively in singular path trajectory planning.
出处 《机器人》 EI CSCD 北大核心 2002年第6期550-553,共4页 Robot
基金 国家 8 63资助项目 (编号 :863-70 4-7-17)
关键词 奇异点 奇异路径 最优轨迹规划 动态规划 kinematic singularity, singular path, optimal trajectory planning, dynamic programming
  • 相关文献

参考文献6

  • 1Bobrow J E, Dubosky S, Gibson J S. Time-optimal Control of robotic manipulators along specified paths. Int J Robotics Res, 1985,4(3):3-17
  • 2Shin K G, McKay N D. Minimum-time control robotic manipulators with geometric path constraints. IEEE Trans Automat Contr, 1985,30(6): 531-541
  • 3Slotine J J E, Yang H S. Improving the efficiency of path following algorithms. IEEE J Robot Automat, 1989,5(1): 18-124
  • 4Shiller Z, Lu H H. Computation of path constrained time optimal motions with dynamic singularities. Trans ASME J Dynamic Syst. Measurement Contr, 1992, 114: 34-40
  • 5Shin K G, McKay N D. A dynamic programming approach to trajectory planning of robotic manipulators. IEEE Robot Automat, 1986, AC-31(6): 491-500
  • 6Kieffer Jon, Cahill Aidan J, James Matthew R. Robust and Accurate Time-Optimal Path-Trajectory Control for Robot Manipulator. IEEE Trans Robotics and Automation, 1997,13(6): 880-890

同被引文献7

  • 1许果,王峻峰,何岭松.一种基于SCARA机器人机械结构设计[J].机械工程师,2005(4):65-67. 被引量:17
  • 2Angeles J.机器人机械系统原理--理论、方法和算法[M].宋伟刚,译.北京:机械工业出版社,2004:251-284.
  • 3Craig J J.机器人学导论[M].负超,译.北京:机械工业出版社,2005:178-202.
  • 4Luhj Y S, Lin C S. Approximate joint trajectories for control of industrial robots along Cartesian path[J]. IEEE Transactions on Systems, Man and Cybernetics, 1984, 14 (3) : 444-450.
  • 5Suryawanshi A B, Joshi M B, Dasgupta B, et al. Domain mapping as an expeditionary strategy for fast path planning [J]. Mechanism and Machine Theory, 2003, (38) : 11-20.
  • 6冯光涛,张伟军,赵锡芳,秦志强.机器人装配操作的规划与控制[J].机器人,2001,23(1):78-84. 被引量:8
  • 7刘迎春,余跃庆,姜春福.柔性机器人研究现状[J].机械设计,2003,20(12):4-8. 被引量:14

引证文献1

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部