期刊文献+

利用发射光谱研究脉冲电晕放电中的自由基 被引量:22

Study of Radicals in Pulsed Corona Discharge by Emission Spectroscopy
下载PDF
导出
摘要 利用发射光谱技术在大气压下测量了以氮气为载气的不饱和水蒸气体系针板式正脉冲电晕放电产生的OH(A2Σ→X2Π0—0)自由基和O(3p5P→3s5S027774nm),Hα(3P→2S6563nm)活性原子的发射光谱,并由N2(C3Πu→B3Πg)的Δv=-3和Δv=-4振动带序发射光谱强度计算得出N2(C,ν′)的相对振动布居及其振动温度,进而采用高斯分布拟合准确地求出了N2(C3Πu→B3Πg)的Δv=+1振动带序发射光谱强度,从而可以由N2(C3Πu→B3Πg)的Δv=+1振动带序与OH(A2Σ→X2Π0—0)的重叠发射光谱中准确求出OH(A2Σ→X2Π0—0)自由基的发射光谱强度。由发射光谱强度得到了激发态OH(A2Σ)自由基和O(3p5P),Hα(3P)活性原子的布居。还研究了激发态OH(A2Σ)自由基和O(3p5P),Hα(3P)活性原子的布居随放电电压和放电频率的变化以及氧气对激发态OH(A2Σ)自由基和O(3p5P),Hα(3P)活性原子布居的影响。 The emission spectra of OH(A(2) E-->X-2 II, O-O), O(3p(5) P-->3s S-5(2)0) and H-alpha(3P-->2S) produced by the positive pulsed corona discharge of N-2 and H2O mixture in a needle-plate reactor have been successfully recorded against a severe electromagnetic interference coming from the pulsed corona discharge at one atmosphere. The relative populations and the vibrational temperature of N2 W, v') were determined. The emission intensity of OH(A(2) Sigma-->X-2 II, 0-0) is obtained through the simulation of the emission spectra of the Deltav = + 1 vibration transition band of N-2 (C (IIu)-I-3 --> B (IIg)-I-3). Relative populations of OH(A(2)Sigma), O(3p(5)P) and H-alpha (3P) have been obtained by the emission intensity of OH(A(2) Sigma --> X-2 II, 0-0), O(3p P-5 --> 3s S-5(2)0) and H-alpha (3P --> 2S) and Einstein's transition probability. The effects of discharge voltage and pulse repetition rate and oxygen flow on the relative populations of OH(A(2)Sigma), O(3P P-5) and H-alpha (3P) are investigated.
机构地区 大连理工大学
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2004年第11期1288-1292,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金委员会和中国工程物理研究院联合资助项目(10276008) 辽宁省自然科学基金委员会(20022138)资助项目
关键词 OH 发射光谱 原子布居 激发态 对激发 放电电压 高斯分布 自由基 活性 不饱和 emission spectrum pulsed corona radicals vibrational populations
  • 相关文献

参考文献10

  • 1[1]Hynes A J, Richter R C, Nien C J. Chemical Physics Letters, 1996, 258: 633.
  • 2[2]Srinivasan B, Palanki S, Grymonpre D R, Locke B R. Chemical Engineering Science, 2001, 56: 1035.
  • 3[3]Mok Y S et al. Chemical Engineering Journal, 2002, 85: 87.
  • 4[4]Lozovsky V A, Derzy I, Cheskis S. Chemical Physics Letter, 1998, 284: 407.
  • 5[5]Joshi A A, Locke B R, Arce P, Finney W C. Journal of Hazardous Materials, 1995, 41: 3.
  • 6[6]Ono R, Oda T. IEEE Transactions on Industry Applications, 2000, 36(1): 82.
  • 7[7]Su Z et al. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, 1999, 3: 1473.
  • 8[8]Sun B et al. Journal of Electrostatics, 1997, 39(3): 189.
  • 9[9]Zoran F. J. Appl. Phys., 1997, 81(11): 7158.
  • 10[10]Eliasson B, Kogelschatz U. J. Phys. B, At Mol. Phys., 1986, 19: 1241.

同被引文献170

引证文献22

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部