期刊文献+

数据挖掘在2型糖尿病数据处理中的应用 被引量:11

Application of data mining in processing type 2 diabetes database
下载PDF
导出
摘要 基于大量实测数据探索2型糖尿病的发病规律,寻求其有效的数据处理方法。将数据挖掘技术引入到2型糖尿病数据处理中得出决策分类树,再同医学认识相对照。利用11400条实测数据,采用C4.5算法得出分类树,经实验患病人群的正确识别率为80.90%,未患病人群的正确识别率为92.05%。给出的决策分类树同目前医学上认识的高危因素趋于一致,同时给出了血糖值等于5.85的临界性数值。数据挖掘方法的引入为2型糖尿病数据处理提供了一种新的方法,为其预警、干预和有效控制提供了一种新的解决方案。 The regular pattern of the type 2 diabetes is explored based on the real data and the effective data processing methods are found. A kind of data mining algorithm is used in processing the type 2 diabetes concrete data, and the decision trees are established, and then the result to the knowledge of physic is compared. Taking the advantage of the 11400 items real data and adopting the C4.5 algorithm to establish the decision trees, the rate of the correct recognition of the healthy person is 80.9% and the rate of the correct recognition of the diabetic patient is 92.05% from the testing results. The decision trees are corresponded with the knowledge of physic, and the critical value of the GLU is given out, which is 5.85. A new method is provided to process the type 2 diabetes, and a new scheme in put forward to predicate, intervene and control the type 2 diabetes.
出处 《计算机工程与设计》 CSCD 2004年第11期1888-1892,共5页 Computer Engineering and Design
基金 国家"十五"攻关基金项目(2001BA702B01)。
关键词 2型糖尿病 病人 人群 血糖值 干预 对照 医学 数据挖掘 识别率 分类树 data mining algorithm of C4.5 knowledge discovery type 2 diabetes
  • 相关文献

参考文献4

  • 1Quinlan, J R. Induction of decision trees[J]. Machine Learning, 1986,(1):81-106.
  • 2Han J.Data mining techniques [C]. ACM-SIGMOD Int'l Conf on Management of Data Montreal, Canada, 1996.
  • 3Agrawal R, Mannila H, Srikant R, et al. AST discovery of association rules [M]. AAAI Press,1996. 307-328.
  • 4Toivonen H. Sampling large databases for finding association rules[C].22th International Conference on Very Large Databases (VLDB'96), 1996. 134-145.

同被引文献73

引证文献11

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部