期刊文献+

任意截面预应力混凝土细长柱的非线性分析 被引量:1

NONLINEARANALYSIS OF PRESTRESSED CONCRETE SLENDER COLUMNS WITHARBITRARY CROSS-SECTION
下载PDF
导出
摘要 提出了轴力和双向弯曲作用下任意截面混凝土和预应力混凝土细长柱的非线性有限元计算模型。分析时既考虑了由单元变形和轴力二次矩引起的几何非线性效应,也考虑了由材料非线性应力应变关系和截面刚度矩阵引起的材料非线性效应。推导了非线性全过程分析的标准有限元公式,得到的单元刚度矩阵可分割成三个子矩阵,分别反映了材料非线性、材料非线性和单元大位移的耦合、轴力二次矩等三种不同的非线性作用效应。计算分析结果和试验结果吻合较好。 A nonlinear finite element computational model for reinforced and prestressed concrete slender columns with arbitrary cross-section under axial load and biaxial bending is presented. The effects of both geometrical nonlinearity and material nonlinearity are considered. And geometrical nonlinearity is caused by element deformation and secondary moment of axial force, and material nonlinearity is caused by nonlinear stress-strain relations of materials and section stiffness matrix. The standard finite element formulae for nonlinear complete analysis are derived. The acquired element stiffness matrix can be partitioned into three submatrices reflecting three different nonlinear effects: material nonlinearity, coupling of material nonlinearity and large element displacement, and secondary moment of axial force, respectively. The results agree well with the experimental ones.
出处 《工程力学》 EI CSCD 北大核心 2004年第6期161-165,共5页 Engineering Mechanics
关键词 计算力学 材料与几何非线性 有限元 预应力混凝土细长柱 任意截面 Finite element method Nonlinear systems Stiffness matrix Strain Stresses
  • 相关文献

参考文献8

  • 1刁波,叶英华,Siu-Shu Eddie LAM.Computer analysis of arbitrary reinforced concrete cross-section under bieccentric load[J].Progress in Natural Science:Materials International,2000,10(4):64-71. 被引量:5
  • 2Rodriguez J A, Aristizabal J D. Biaxial interaction diagrams for short RC columns of any cross section[J]. J. Struct. Engrg. ASCE, 1999, 125(6): 672-683.
  • 3Kwak H G, Kim S P. Nonlinear analysis of RC beams based on moment-curvature relation[J]. Comp. and Struct. 2002, 80(7-8): 615-628.
  • 4Wu X H, Otani S, Shiohara H. Tendon model for nonlinear analysis of prestressed concrete structures[J]. J. Struct. Engrg. ASCE, 2001, 127(4): 398-405.
  • 5Chuang P H, Kong S K. Strength of slender reinforced concrete columns[J]. J. Struct. Engrg. ASCE, 1998, 124(9): 992-997.
  • 6Tsao W H, Hsu C T T. Behaviour of biaxially loaded square and L-shaped slender reinforced concrete columns[J]. Mag. of Concrete Res, 1994, 46(169): 257-267.
  • 7Kang Y J, Scordelis A C. Nonlinear analysis of prestressed concrete frames[J]. J. Struct. Div. ASCE, 1980, 106(ST2): 445-462.
  • 8Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear [J]. ACI Struct. J, 1986, 83(2): 219-231.

共引文献4

同被引文献8

  • 1GB50010—2002.混凝土结构设计规范[S].[S].,2002..
  • 2TSAO W H, HSU C T T. Behaviour of biaxially loaded square and L-shaped slender reinforced concrete columns[J]. Magazine of Concrete Research, 1994, 46 (169) :257 - 267.
  • 3WANG G G, HSU C T T. Nonlinear analysis of reinforced concrete columns by cubic-spline function[J]. Journal of Engineering Mechanics, 1998, 127(4) :803 - 810.
  • 4CHUANG P H, KONG S K. Strength of reinforced concrete columns [J]. Journal of Structural Engineering,1998, 124(9): 992-998.
  • 5AHMAD S H, WEERAKOON S I.. Model for behavior of slender reinforced concrete columns under biaxial bending[J]. ACI Structural Journal, 1995, 92(2) : 188 - 198.
  • 6KIM J K, LEE S S. The behavior of reinforced concrete columns subjected to biaxial bending [J]. Engineering Structure, 2000, 22(11) : 1518 - 1528.
  • 7RODRIGUEZ J A, ARISTIZABAL J D. Biaxial interaction diagrams for short RC columns of any cross section [J]. Journal of Structural Engineering, 1999,125(6) : 672-683.
  • 8VECCHIO F J, COI.I.INS M P. The modified compression field theory for reinforced concrete elements subjected to shear [J]. ACI Structural Journal, 1986, 83(2) : 219 - 231.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部