期刊文献+

基于Rough set理论的增量式规则获取算法 被引量:4

Incremental Rule Acquisition Algorithm Based on Rough Set
下载PDF
导出
摘要 从 Rough set理论出发 ,讨论在新增数据时 ,新数据与已有规则集的关系、属性约简以及值约简的变化规律 .并在此基础上提出一个新的基于 Rough Set理论的增量式算法 .从理论上和实验上对新算法和传统算法在算法复杂度上做了分析与比较 . The relation of the new instances with the originally rule set, the change law of attribute reducti on and value reduction were studied when a new instance coming. A new in c remental learning algorithm for decision tables was presented within the framewo r k of rough set. The new algorithm and the classical algorithm were analy zed and compared by theory and experiments.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第1期36-41,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金 (60 3 73 111)资助 重庆市科委攻关基金 (70 0 6)资助 重庆邮电学院科研基金 (A2 0 0 4-4 6)资助
关键词 增量式算法 规则获取 ROUGH SET理论 决策表 incremental algorithm rule acquisition rough set theory decision table
  • 相关文献

参考文献13

  • 1刘宗田.属性最小约简的增量式算法[J].电子学报,1999,27(11):96-98. 被引量:43
  • 2王志海,胡可云,胡学钢,刘宗田,张奠成.概念格上规则提取的一般算法与渐进式算法[J].计算机学报,1999,22(1):66-70. 被引量:66
  • 3王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766. 被引量:594
  • 4曾黄麟.粗集理论及其应用-关于数据推理的新方法(修订版)[M].重庆:重庆大学出版社,1998..
  • 5.[EB/OL].http://www. ics. uci. edu/-mlearn/MLRepository.,.
  • 6Pawlak Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982, 11 (5) : 341-356.
  • 7Pawlak Z. On learning-a rough set approach[C]. Proc. Intl.Symp. On Computeation Theory and Lecture Notes in Computer Science, G. Goos, et al. (eds.), 1984,208,197-227.
  • 8Yu H, Wang G, Yang D. Knowledge reduction algorithms based on rough set and conditional information entropy [J].Proceedings of Spie.. Data Mining and Knowledge Discovery:Theory,Tool, and Technology IV, 4730 : 422-431.
  • 9Godin R, Missaoui R, alaui H. Incremental concept formation algorithms based on galoies (concept) lattics[J]. Computational Intelligence, 1995,11 (2) : 246-267.
  • 10Pawlak Z. Rough set,theoretical aspects and reasoning about data[[K]. Kluwer Academic Publishers, 1991.

二级参考文献7

共引文献683

同被引文献34

  • 1马光志,倪国元.一种增量式模糊聚类算法[J].微计算机应用,2005,26(1):5-7. 被引量:8
  • 2张宇,刘挺,文勖.基于改进贝叶斯模型的问题分类[J].中文信息学报,2005,19(2):100-105. 被引量:47
  • 3韩业红,戴凌霄.一种基于粗集理论的增量式学习改进算法[J].计算机工程与应用,2007,43(1):185-188. 被引量:1
  • 4.[EB/OL].http://www.ics.uci.edu/~mlearn/MLRepository,.
  • 5Pawlak Z.Rough set[J].International Journal of Computer and Information Sciences,1982; 11 (5):341~356
  • 6Pawlak Z.On learning-a rough set app roach[C].In:G Goo s eds.Proc Intl Symp,On Computation Theory and Lecture Notes in Computer Science,1984 ;208:197~227
  • 7Yu H,Wang G,Yang D.Knowledge reduction algorithms based on rough set and conditional information entropy[J].Proceedings of Spi.e.:Data Mining and Know ledge Discovery Theory,Tool,and TechnologyⅣ,4730:422~431
  • 8Marius A Pasca. High-performance, open-domain question answering from large text collections. [Ph.D. dissertation], University of Southern Met hodist, 2001.
  • 9Cody Kwok, Oren Etzioni, and Daniel. Scaling question answering to the web [J]. ACM Trans. on Information Systems, 2001, 9(3): 242-262.
  • 10Shaw M L G and Gaines B R. Question classification in rule-based systems [C]. Proceedings of Expert Systems'86, The 6Th Annual Technical Conference on Research and development in expert systems, Brighton, 1987: 123-131.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部