期刊文献+

基于冠层反射光谱的水稻产量预测模型 被引量:46

Rice Yield Forecasting Model with Canopy Reflectance Spectra
下载PDF
导出
摘要 基于地面实测的水稻冠层反射光谱,计算了常用的8个植被指数,并在产量形成生理特征的基础上,系统分析了水稻籽粒产量及其构成因素与各植被指数之间的关系。结果表明,通过单一生育时期或某个生育阶段的光谱植被指数来直接估测产量精度较低。发现叶面积氮指数(叶片氮百分含量与叶面积指数的乘积)的变化趋势很好地反映了产量的形成过程,且与光谱植被指数极显著正相关,基于此建立了水稻的光谱植被指数-累积叶面积氮指数-产量估测模型(VICLANIYieldModel)。并将其与LAD-产量模型、多生育期复合估产模型进行了比较,表明本模型预测精度最高。 Spectral reflectance of rice canopies with different nitrogen treatment was measured over an entire growing season and eight spectral indices such as RVI, NDVI, PVI etc were calculated. Based on the biological mechanism of yield formation, relationships of these vegetation indices to yield and its components were analyzed. The results showed that it was limited to predict yield with vegetation index from single or multiple developing stages. However, the dynamic curve of Leaf Area Nitrogen Index (product of LAI by leaf nitrogen content on dry weight basis) can well track the process of yield formation. Due to the close relationship with the vegetation index, Cumulative Leaf Area Nitrogen Index (CLANI, the area below the curve) was used to derive a model named VI-CLANI-Yield model for rice yield estimation. The comparison of the present model with the LAD-Yield model and complex VI-Yield model indicated that the yield estimation accuracy was best for VI-CLANI-Yield model with average relative error of 0.075. This suggests that VI-CLANI-Yield model would be a practical and effective approach for rice yield forecasting.
出处 《遥感学报》 EI CSCD 北大核心 2005年第1期100-105,共6页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金重点资助项目(30030090) 国家863计划资助项目(2002AA243011)。
关键词 水稻 光谱植被指数 叶面积氮指数 产量 产量构成 预测模型 rice vegetation index leaf area nitrogen index (LANI) yield yield components forecasting model
  • 相关文献

参考文献23

  • 1Moran M S, Inoue Y, Barnes E M. Opportunities and Limitations for Image-based Remote Sensing in Precision Crop Management[J]. Remote Sensing of Environment, 1997, 61:319-346.
  • 2Patel N K, Sahal T P, Patel M S. Spectral Response of Rice Crop and Its Relations to Yield and Yield Attributes[J]. International Journal of Remote Sensing, 1985, 6(5): 657-664.
  • 3Shibayama M, Akiyama T. Estimating Grain Yield of Maturing Rice Canopies Using High Spectral Resolution Reflectance Measurement[J]. Remote Sensing of Environment, 1991, 36:45-53.
  • 4王延颐.植被指数与水稻长势及产量结构要素关系的研究[J].国土资源遥感,1996,8(1):56-59. 被引量:17
  • 5吉书琴,陈鹏狮,张玉书.水稻遥感估产的一种方法[J].应用气象学报,1997,8(4):509-512. 被引量:10
  • 6Zhang X Y, Li R D, Chen S J,et al. A Practical Model for Rice Yield Estimating[A]. Corpus of Research on Yield Estimating Technology with Remote Sensing of Wheat, Corn and Rice[C]. Beijing: Science and Technology Press, 1993. [张晓阳,李仁东,陈世俭,等. 水稻遥感单产估算实用化模型[A]. 小麦、玉米和水稻遥感估产技术试验研究文集[C]. 北京:中国科学技术出版社,1993 ]
  • 7Aparicio N, Villegas D, Casadesus J, et al. Spectral Vegetation Indices as Nondestructive Tools for Determining Durum Wheat Yield[J]. Agronomy Journal, 2000, 92: 83-91.
  • 8Serrano L, Filella I, Penuelas J. Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies[J]. Crop Science, 2000,40:723-731.
  • 9侯英雨,王石立.基于作物植被指数和温度的产量估算模型研究[J].地理学与国土研究,2002,18(3):105-107. 被引量:26
  • 10Rudorff B F T,Batista G T. Spectral Response of Wheat and Its Relationship to Agronomic Variables in the Tropical Region [J]. Remote Sensing of Environment. 1990, 31:53-63.

二级参考文献9

  • 1刘金英,环境监测与作物估产的遥感研究论文集,1991年
  • 2董厚德,辽宁省植被类型图,1985年
  • 3蒋亨显,浙江农业大学学报,1993年,19卷,增刊,73页
  • 4王珂,浙江农业大学学报,1993年,19卷,增刊,66页
  • 5王人潮,浙江农业大学学报,1993年,19卷,增刊,15页
  • 6王人潮,浙江农业大学学报,1993年,19卷,增刊,23页
  • 7王人潮,浙江农业大学学报,1993年,19卷,增刊,7页
  • 8朱德峰,浙江农业大学学报,1993年,19卷,增刊,78页
  • 9徐希孺,周莲芳,朱晓红.混合像元的因子分析方法及其在大范围冬小麦播种面积估算中的应用探讨[J].科学通报,1989,34(12):946-949. 被引量:32

共引文献90

同被引文献706

引证文献46

二级引证文献407

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部