摘要
鞭毛电机(BFM)是微观世界里的一种分子旋转电机,其利用 H+的电化学势能转化为机械能推动转子旋转。由于鞭毛电机体积大、易操作,因而可作为研究分子旋转电机的理想模型,对认识生物能量转化及细胞运动机制有重要的意义。该文介绍了鞭毛电机的结构组成,阐述了其运行机理。基于超声波电机的模型,详细分析了力矩产生机制,即 H+的跨膜运动带动定子在超声波频域内的振动,通过定子和转子之间的摩擦作用和弹性形变产生转矩,将振动能转化为机械能。利用工程振动学,对鞭毛电机定子的振动特性作了分析,计算出离子通道的振动频率,并对振子的振动方程作了解析。通过对宏观的超声波电机的研究,得出了鞭毛电机的转速-转矩关系的数学模型,并对其进行仿真得到了机械特性曲线,仿真结果与目前实验测得的数据相吻合。并基于仿真结果,利用旋转动力学,对输入功率、输出功率进行计算,得出了机械效率,结果表明鞭毛电机是一种效率较高的微电机。
Bacterial flagellar motor is a kind of revolving molecular motor which converts electrochemical potential energy of H+ into the mechanical energy of rotation. Due to its big volume and being operated easily , the bacterial flagellar motor has become a perfect model for the research of revolving molecular motor , which conduces to understanding the mechanism of biologic energy transform and cell movement. This paper introduced the flagellar motor’s structure and function mechanism based on the ultrasonic motor which is realized by the friction and elastic shape change between the stator and the rotor. Furthermore, through engineering vibrations, the vibration characterics of the vibrator was analyzed in detail. After the research of macroscopical ultrasonic motor, the mathematical mode of relationship between the revolution speed and torque was concluded and then simulated. The simulation results coincide with the experimental data. Based on the results, the output power, input power and mechanical efficiency were calculated , just as the experimental data , all of which show that the bacterial flagellar motor is a high efficient micro motor of microorganisms.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2005年第1期92-96,共5页
Proceedings of the CSEE
基金
国家自然科学基金项目(50207006)
教育部博士点基金项目(20040056021)
天津市自然科学基金项目(053603311)。~~