期刊文献+

生物膜滴滤塔的废气净化效率 被引量:9

PURIFICATION EFFICIENCY OF BIOTRICKLING BED FOR VOC WASTE GAS
下载PDF
导出
摘要 本文在生物膜滴滤塔废气净化的毛细管模型基础上,研究了气、液两相流量、填料的比表面积、孔隙率、生物膜覆盖率和甲苯进口浓度等参数对生物滴滤塔净化效率的影响。计算结果表明:随着气、液流量的增加,降解效率降低;当孔隙率一定,随着填料的比表面积增大,降解效率升高;当填料比表面积一定时,存在一个对应于最大净化效率的最佳孔隙率;生物膜覆盖率越大,净化效率也越高;随着甲苯进口浓度升高,净化效率降低;填料床越高,净化效率越高。 A capillary tube model is established to study the purification efficiency of biotrickling bed for VOC waste gas. The mass diffusion coefficient is modified by the tortosity of porous bed. Based on this model, the effects of gas flux, fluid flux, the specific surface area and porosity of packed material, the coverage fraction of biofilm, the toluene inlet concentration, and the height of packing bed on purification efficiency are theoretically investigated, respectively. The computed results show that the purification efficiency decreases with the increases of liquid flux and gas flux. For a fixed porosity of packed material, a larger specific surface area leads to higher purification efficiency. Under a specific surface area of packed material, there exists an optimum porosity corresponding to the highest purification efficiency. As the coverage fraction of biofilm and the height of packing bed increasing, the purification efficiency increases. A higher inlet concentration of toluene and shorter packed bed induce less purification efficiency.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2005年第1期122-124,共3页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50006015)重庆市科技攻关项目(No.2001-6681)重庆市应用基础研究项目(No.2001-6877)
关键词 生物膜滴滤塔 毛细管模型 挥发性有机废气 净化效率 biotrickling bed capillary tube model VOC waste gas purification efficiency
  • 相关文献

参考文献3

二级参考文献16

  • 1Ottengraf S P E van den Oever A H C. Kinetics of organic compound removal from waste gases with a biological filter.Biotechnology and Bioengineering, 1983, XXV: 3089-3102.
  • 2Douglas S H, Joseph S D. Modeling removal of air contaminants by bioflltration. Journal of Environmental Engineering, 1995,121(1): 21-33.
  • 3Jennings P A, Snoeyink V L, Chian E S K. Theoretical model for a submerged biological filter. Biotechnology and Bioengineering, 1976, XⅤⅢ: 1249-1273.
  • 4Nguyen H D, Sato C, Wu J, et al. Modeling bioflltration of gas streams containing TEX components. Journal of Environmental Engineering, 1997, 123(6): 615-621.
  • 5Deshusses M A, Hamer G, Dunn I J. Behavior of biofilters for waste air biotreatment. I. Dynamic model development.Environ Sci Technol, 1995a, 29(4): 1048-1058.
  • 6Zarook S M, Shaikh A A, Ansar Z, et al. Biofiltration of volatile organic compound (VOC) mixtures under transient conditions. Chemical Engineering Science, 1997, 52(21/22): 4165-4142.
  • 7Abumaizar R J, Smith E H, Walter K. Analytical model of dual-media biofilter for removal of organic air pollutants. Journal of Environmental Engineering, 1997, 123 (6): 606-614.
  • 8Parker W J. A multi-parameter sensitivity analysis of a model describing the fate of volatile organic compounds in trickling filters. Journal of the Air&Waste Management Association, 1997, 47:871-880.
  • 9Sun A K, Hong J, Thomas K W. Modeling trichloroethylene degradation by a recombinant pseudomonad expressing toluene ortho-monooxygenase in a fixed-film bioreactor. Biotechnology and Bioengineering, 1998, 59(1): 40-51.
  • 10Raj M, Warren S, Santiago V, et al. Predictive model for toluene degradation and microbial phenotypic profiles in fiat plate vapor phase bioreactor. Journal of Environmental Engineering, 1997, 123(6): 586-592.

共引文献15

同被引文献147

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部