期刊文献+

A NEW REGULARITY CLASS FOR THE NAVIER-STOKES EQUATIONS IN IR^n 被引量:39

A NEW REGULARITY CLASS FOR THE NAVIER-STOKES EQUATIONS IN IR ̄n
原文传递
导出
摘要 Consider the Navier-Stokes equations in IRn×(0, T), for n≥3. Let 1 < a≤min{2, n/(n-2)} and define β by (2/a)+ (n/β) = 2. Set α′= α/(α-1). It is proved that Dv belongs to C(0, T; Lα′) ∩ Lα′ (0, T; L2β/(n-2)) whenever Dv ∈ Lα(0, T; Lβ). In pwticular, v is a regular solution. This results is the natural extensinn to α ∈ (1, 2] of the classical sufficient condition that establishes that Lα(0, T; Lγ) is a regularity class if (2/α)+(n/γ) = 1. Even the borderline case α = 2 is significat. In fact, this result states that L2(0, T; W1,n) is a regularity class if n≤ 4. Since W1,n→L∞ is false, this result does not follow from the classical one that states that L2(0, T; L∞) is a regularity class.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1995年第4期407-412,共6页 数学年刊(B辑英文版)
关键词 Navies-Stokes equation Regularity of solution Extension. 正则解 Navier-Stokes等式 展开式 初值问题
  • 相关文献

同被引文献25

引证文献39

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部