期刊文献+

利用SASPROC MIXED分析混合线性模型非平衡试验数据 被引量:3

Analysis of linear mixed models with unbalanced data using SAS PROC MIXED
下载PDF
导出
摘要 统计软件SAS中PROCMIXED的发展使得混合线性模型非平衡试验数据的分析在技术上变得简单可行。但在小样本非平衡数据条件下,选择怎样的自由度计算方法用于固定效应统计检验,才能取得较准确的分析结果,则是一个尚未明确的问题。本文利用PROCMIXED提供的几个自由度计算方法对3个常用农业试验设计的非平衡数据进行了分析。MonteCarlo模拟研究结果表明,Kenward Roger法能够取得第一类统计错误率的最佳控制。 The development of PROC MIXED of SAS has made analysis of the linear mixed model with unbalanced data technology accessible.However,a sticky problem for the procedure has been the specification of appropriate degrees of freedom for test of moxed effects in unbalanced data with small sample sizes.This paper considered the analysis of unbalanced data from 3 experimental designs frequently used in agricultural research. Several methods for aproximating the degrees of freeom are employed,all of which are available in PROC MIXED. The Monte Carlo simulation results showed that the Kenward-Roger method provided the best control of the Type I error rate.
作者 胡希远
出处 《数理统计与管理》 CSSCI 北大核心 2005年第1期45-51,57,共8页 Journal of Applied Statistics and Management
关键词 非平衡数据 固定效应 Kenward-Roger法 第一类统计错误率 Unbalanced data Fixed effect Kenward-Roger method Type I error rate
  • 相关文献

参考文献13

  • 1Henderson C R.. In : Advances in Statistical Methods for Genetic Improvement of Livestock [ M ]. New York :Springer Verlag, 1990.
  • 2Henderson C R. Application of linear models in animal breeding[ M ]. University of Guelph, 1984.
  • 3Ahrens H. Die Varianzanalyse [ M ]. Berlin : Akademie-Verlag, 1967.
  • 4Searle S R. Topics in variance component estimation [ J ]. Biometrics, 1971,27 : 1 - 76.
  • 5Searle S R. Casella G, McCulloch C E. Variance Components[ M]. New York: John Wiley and Sons, Inc.,1992.
  • 6Fai A H T, Cornelius P L. Approximate F-Tests of multiple degree of freedom hypotheses in generalized lest squares analyses of unbalanced split-plot experiments [ J ]. J. Statist. Comput. Simul. , 1996,54 : 363 - 378.
  • 7Giesbrecht F G, Bums J C. Two-stage analysis based on a mixed model:large-sample asymptotic theory and small-sample simulation results[J] Biometrics,1985,41:477 -486.
  • 8Kenward M G, Roger J H. Small Sample Inference for fixed effects from restricted maximum likelihood [ J ] Biometrics, 1997,53:983 - 997.
  • 9Kackar A N, Harville D A. Unbiasedness of two-stage estimation and precision procedures for mixed linear models [ J ]. Communications in Statistics, Series A , 1981,10 : 1249 - 1261.
  • 10SAS Institute Inc. SAS OnlineDoc, Version 8, Cary, NC : SAS Institute Inc. 1999.

同被引文献28

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部