期刊文献+

耦合蠕变损伤的Chaboche粘塑性本构方程的应用 被引量:7

Applied Investigation of Chaboche's Unified Visco-Plastic Constitutive Model of Coupled Creep Damage
下载PDF
导出
摘要 为了改善 Chaboche粘塑性统一本构方程描述第三阶段蠕变的能力 ,按照 Lemaitre有效应力的概念 ,采用 Kachanov损伤演化方程 ,推导了耦合各向同性损伤因子的 Chaboche粘塑性流动方程和硬化方程。当耦合损伤时 ,内变量演化方程形式不变 ,并不显含损伤因子 D。将之用于镍基高温合金 Udimet72 0 Li的蠕变描述 ,得到了该合金的蠕变损伤参数。通过对双轴试样的有限元计算 ,发现了 Kachanov损伤演化方程对单轴和多轴蠕变的预测并不协调。在损伤演化方程中引入多轴损伤因子得到了与实验数据基本一致的蠕变寿命结果。 In order to improve the capability of Chaboche's unified visco-plastic model in describing the tertiary creep, with Kachanov's equation of damage evolution based on Lemaitre's effective stress being used, Chaboche's visco-plastic potential function was utilized to obtain the inelastic flow rule and hardening rule coupling to damage. It is shown that the form of the evolutionary equations of internal variables remains the same, and that the damage variable is not explicit in the equations. The modified constitutive model with damage was applied to the description of the uni-axial and bi-axial creep behaviors of a Ni-based superalloy, Udimet 720 Li, by coding the user's material subroutine, UMAT, in ABAQUS platform. The finite element analysis of cruciform specimens shows that the inconsistency between uni-axial and bi-axial creep modeling capability exists in Kachanov's damage law especially at the time of rupture. The calculated creep behaviors match well with the experimental ones when a multi-axial damage factor is introduced into the damage evolutionary equation.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2005年第1期60-65,共6页 Journal of Aerospace Power
基金 欧盟 F P5框架 E3 E发动机中德 JET项目 Disc L ifing项目 ( E0 110 0 3 0 2)
关键词 航空、航天推进系统 航空发动机 本构关系 粘塑性 损伤 多轴蠕变 Aircraft engines Aircraft propulsion Finite element method Stress analysis
  • 相关文献

参考文献9

二级参考文献27

  • 1.航空发动机设计手册(第18分册)[z].北京:航空工业出版社,2001..
  • 2[1]Chaboche J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity [J]. Int J of Plasticity, 1989,5:247~302
  • 3[2]Chaboche J L. On some modifications of kinematic hardening to improve the description of ratchetting effects[J]. Int J of Plasticity, 1991,7:661~678
  • 4[3]Bodner S R, Partom Y. Contitutive equations for elastic-viscoplastic strain hardening materials[J]. ASME J Appl Mech, 1975, 42(6):385~389
  • 5[4]Bodner S R, Partom Y, Partom I. Uniaxial cyclic loading of elastic-viscoplastic materials [J]. ASME J Appl Mech, 1979, 46(12): 805~810
  • 6[5]Bodner S R, Partom Y. A large deformation elastic-viscoplastic analysis of a thick-walled spherical shell[J]. ASME J Appl Mech, 1972, 39(9):751~757
  • 7[6]Walker K P. Research and development program for non-Linear structural modeling with advanced time-temperature dependent constitutive relationships[R]. NASA-CR-165553, 1981
  • 8[7]Amstrong P J, Frederick C O. A mathematical representa-tion of multiaxial Bauschinger effect [R]. CEGB report RD/B/N731, Central Electricity Generating Board,1966
  • 9[8]Ohno N, Wang J D. Kinematic hardening rules with critical state of dynamic recovery, PartⅠ: Formulation and basic features for ratchetting behavior [J]. Int J Plasticity, 1993, 9:375~390
  • 10[9]Ohno N. Constitutive modeling of cyclic plasticity with emphasis on ratchetting[J]. Int J Mech Sci, 1998, 40(2-3): 251~261

共引文献27

同被引文献101

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部