摘要
Wang Ball曲线作为一种广义Ball曲线已经在参数曲线求值、升降阶计算中显示出极其有效的作用 .为了在几何设计中更好地发挥其作用 ,应当用简单的方法求出Bernstein基到Wang Ball基的转换矩阵 .该文借助于一个多项式的展开算法 ,给出了这个转换矩阵 ,即给出了B啨zier曲线到Wang Ball曲线的转换公式 ,并应用它简捷地推导出n次Wang Ball曲线的中点离散公式 .
As a kind of generalized Ball curves, Wang Ball curves have shown greatly efficient effects on evaluating parametric curves, degree elevation and degree reduction. In order to exert its effect on geometric design, we should use a simple method to derive the conversion matrix from the Bernstein basis to the Wang Ball basis. By an algorithm for polynomial expanding, this paper gives a conversion matrix, that is, a conversion formula from Bézier curves to Wang Ball curves. And this formula is applied to derive the midpoint subdivision formula of degree n Wang Ball curves.
出处
《计算机学报》
EI
CSCD
北大核心
2005年第1期75-80,共6页
Chinese Journal of Computers
基金
国家自然科学基金 (60 173 0 3 4)
国家自然科学重点基金 (60 3 3 3 0 10 )
国家"九七三"重点基础研究规划项目基金 (2 0 0 2CB3 12 10 1)资助 .