期刊文献+

基于最小不确定性神经网络的茶味觉信号识别 被引量:3

Identification of Taste Signals of Tea Based on Minimal Uncertainty Neural Networks
下载PDF
导出
摘要 提出了一种基于最小不确定性神经网络方法的味觉信号识别模型,使用贝叶斯概率理论和粒子群优化算法(PSO),快速而有效地确定网络结构参数,实现了对10种茶味觉信号的识别,实验结果表明了将该模型引入到茶味觉信号识别的可行性和有效性. It is well known that determining the structure and training the parameters of neural networks efficiently are difficult in the field of neural networks research. These years it has been somewhat successful to construct neural networks in light of Bayesian theorem and to optimize neural networks according to particle swarm optimization respectively. A novel model of taste signals recognition based on minimal uncertainty neural networks is proposed in this paper. The model adopts minimization uncertainty adjudgment to construct the networks structure, and uses Bayesian theorem and particle swarm optimization (PSO) to determine the parameters of the networks rapidly and efficiently. The identification of the taste signals of 10 kinds of tea is successful in utilization of this model. The experimental results show the feasibility and probability of introducing the proposed model to the identification of taste signals of tea. Section 2 presents the model of minimal uncertainty neural networks (MUNN) . How to determine the weights and biases of MUNN by Bayesian theorem, PSO, and the hybrid of them are illustrated respectively in section 3. The experimental results are presented and discussed in section 4 . Conclusions are in section 5.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第1期66-71,共6页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(60433020)国家自然科学基金项目(60175024)教育部科学技术研究重点项目(02090)教育部"符号计算与知识工程"重点实验室基金项目(93K-17)
关键词 最小不确定性 贝叶斯概率 粒子群优化 茶味觉信号 minimal uncertainty Bayesian theorem particle swarm optimization taste signals of tea
  • 相关文献

参考文献9

  • 1周春光,梁艳春,田勇,胡成全,孙新.基于模糊神经网络味觉信号识别的研究[J].计算机研究与发展,1999,36(4):401-409. 被引量:14
  • 2黄艳新,周春光,杨国慧,邹淑雪.基于熵聚类模糊神经网络味觉信号识别系统的研究[J].计算机研究与发展,2004,41(3):414-419. 被引量:11
  • 3Kochi, India. Ninan Sajeeth Philip, K Babu Joseph. Boosting the differences: A fast Bayesian classifier neural network. Intelligent Data Analysis, Netherlands: IOS Press, 2000. 463-473.
  • 4Matthew A Kupinski, Darrin C Edwards, Maryellen L Giger, et al.Ideal observer approximation using Bayesian classification neural networks. IEEE Trans. on Medical Imaging, 2001, 20(9) : 886--899.
  • 5Jakob Vesterstrom, Jacques Riget. Particle swarms-extensions for improved local, multi-modal, and dynamic search in numerical optimization: [ Master dissertation ] . Aarhus C., Denmark:Department of Computer Science, Ny Munkegade, Bldg, 540,University of Aarhus DK-800, 2002.
  • 6M. Settles, B. Rylander. Neural network learning using particle swarm optimizers. Advances in Information Science and Soft Computing. Athens, Greece: WSEAS Press, 2002. 224--226.
  • 7Shunichiro Watanabe, Akira Yokoyama, Zhang Wenyi, et al.Detection mechanism of taste signals with commercial ion sensors.Journal of the Institute of Electrical Engineers of Japan (in Japanese), 1998, CS-98-30: 13- 18.
  • 8Ander Hoist. The use of a Bayesian neural network model for classification tasks: [Ph. D. di~ertation]. Stockholm, Sweden:Department of Numerical Analysis and Computing Science, Royal Institute of Technology, 1997.
  • 9J Kennedy, R C Eberhart. Particle swarm optimization. The IEEE lnt'l Conf. on Neural Networks, Piscataway, NJ. 1995.

二级参考文献23

  • 1周春光,部昭明.神经网络味觉信号的学习和识别[J].吉林大学自然科学学报,1994(1):31-34. 被引量:2
  • 2周春光.味觉信号的特征抽取[J].吉林大学自然科学学报,1994(2):25-28. 被引量:1
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 4田勇,小型微型计算机系统,1998年,19卷,12期,1页
  • 5Joo Y H,Fuzzy Sets Systems,1997年,86卷,3期,279页
  • 6Li Wei,Fuzzy Sets Systems,1997年,87卷,2期,133页
  • 7刘增良,模糊逻辑与神经网络,1996年
  • 8焦李成,神经网络系统理论,1995年
  • 9Cai Yaling,Proc AMSESCI’94,1994年,894页
  • 10Kanai Y,Sensors Actuators B,1994年,20卷,175页

共引文献22

同被引文献45

引证文献3

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部