期刊文献+

粗糙集理论及其在短期电力负荷预测中的应用 被引量:11

Rough Set Theory and Its Application in Short-term Load Forecasting
下载PDF
导出
摘要 影响负荷预测精度的因素众多 ,为了找到负荷值与各种外在因素之间的关系 ,利用粗糙集理论对各条件属性进行属性约简分析 ,在属性约简算法中采用遗传算法进行寻优计算 ,找到与负荷直接相关的因素 ,然后将它作为模糊神经网络的输入矢量进行负荷预测。经仿真分析证明预测精度和速度都得到改善。 There are many factors that influence the accuracy of load forecasting. In order to find the relationship between the load and the outside factors, rough set th eory is used to analyze the condition attributes and to find the relevant factor s to load, these factors are then applied to the fuzzy neural networks as the in put vectors to forecast load. Genetic algorithm is used for optimal searching in attribute reduction. It has been proved that better accuracy and convergence of forecasting are gained by the simulation results.
作者 冯丽 邱家驹
出处 《电力系统及其自动化学报》 CSCD 2004年第6期60-63,共4页 Proceedings of the CSU-EPSA
关键词 负荷预测 粗糙集 遗传算法 神经网络 load forecasting rough set genetic algorithm n eural network
  • 相关文献

参考文献4

  • 1Papalexopoulos A D,Hesterberg T C.A regression-based approach to short term system load forecasti-ng[J].IEEE Transaction on Power Systems,1990,5(4):1535-1547
  • 2Taylor James W,Buizza Roberto.Neural network load forecasting with weather ensemble predictions[J].IEEE Transactions on Power Systems,2002,17(3):626-633
  • 3Lambert-Torres Germano.Application of rough set in power system control center data mining[A].In:IEEE Power Engineering Society Winter Meeting[C].2002.627-631
  • 4Li Qiu-dan,Chi Zhong-xian,Shi Wen-bing.Applicat-ion of rough set theory and artificial neural network for load forecasting[A].In:Proceeding of the First International Conference on Machine Learning and Cybernetics[C].Beijing:2002.1148-1152,4-5

同被引文献108

引证文献11

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部