期刊文献+

基于简约SQP和混合自动微分的反应参数优化 被引量:5

Optimization of reaction parameters based on rSQP and hybrid automatic differentiation algorithm
下载PDF
导出
摘要 针对甲醇烃动态过程反应参数优化问题,提出了一种基于混合自动微分技术和改进简约空间序列二次规划(rSQP)算法相结合的求解方法.该方法将动态优化问题离散化为以代数方程表示的非线性规划问题,利用问题结构稀疏、自由度相对较低,并含有大量等式约束等特点,以改进的简约空间序列二次规划算法为求解器来求解优化问题,并在求解过程中,采用混合自动微分技术获取优化问题的一阶导数信息和稀疏结构.计算结果表明,该方法的求解效率比差分求导的标准序列二次规划(SQP)算法高100多倍,比混合自动微分求导的SQP算法高10倍左右,另外求解精度也有显著提高. To optimize the reaction parameters in the dynamical process of methanol-to-hydrocarbons, a method based on reduced sequential quadratic programming (rSQP) and hybrid automatic differentiation technology was presented. The dynamical optimization problem was firstly discredited as a nonlinear programming problem denoted by algebraic equations. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem was solved by improved rSQP solver. In the solving process, hybrid automatic differentiation technology was used to obtain the sparse structure and gradient information. Computational results show that the efficiency of the proposed method is more than 100 times as that of the standard sequential quadratic programming (SQP) with differences, and is more than 10 times as that of standard SQP with hybrid automatic differentiation. The accuracy is also improved with the proposed method.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第12期1606-1610,1614,共6页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2002AA412110) 国家"973"重点基础研究发展规划资助项目(2002CB312200).
关键词 过程系统优化 简约SQP 自由度 梯度 自动微分 Computational methods Degrees of freedom (mechanics) Differential equations Gradient methods Process control Quadratic programming
  • 相关文献

参考文献16

  • 1CUTHRELL J E, BIEGLER L T. On the optimization of differential-algebraic process systems [J]. AICHE Journal, 1987, 33(8): 1257-1270.
  • 2GILL P E, MURRAY W. Handbooks in operations research and management science[M]. Amsterdam:Elsevier, 1989 : 171-210.
  • 3BOGGS P T, TOLLE J W. Sequential quadratic programming [J]. Acta Numerica, 1995, 1: 1-51.
  • 4BIEGLER L T, NOCEDAL J, SCHMID C. A reduced hessian method for large-scale constrained optimization [J]. SIAM Journal of Optimization, 1995, 5: 314-347.
  • 5VANSANTHARAJAN S, BIEGLER L T. Large-scale decomposition for successive quadratic programming [J]. Computer and Chemical Engineering, 1988, 12: 1087-1103.
  • 6BYRD R H, NOCEDAL J. Analysis of reduced Hessian methods for constrained optimization [J]. Numerical Programming, 1991,49: 285-323.
  • 7邵之江,钱积新.精馏塔联立优化的简约空间SQP算法[J].化工学报,1998,49(4):511-514. 被引量:12
  • 8TOLSMA J E, BERTION P I. On computational differentiation [J]. Computer and Chemical Engineering, 1998, 22(5): 475-490.
  • 9CHRISTIAN B, AL I B, PEYVAND K, et al. Computing Gradients in Large-Scale Optimization Using Automatic Differentiation [R]. Argonne, Mathematics and Computer Science Division. 1996.
  • 10MARIA G. An adaptive strategy for solving kinetic model concomitant estimation-reduction problems [J]. Canada Journal of Chemical Engineering, 1989, 67: 825-831.

二级参考文献15

  • 1邵之江,张余岳,钱积新.面向方程联立求解的精馏塔模拟与优化一体化算法[J].化工学报,1997,48(1):46-51. 被引量:16
  • 2邵之江,1997年
  • 3HANDE Y B, ROBERT J V, DAVID F S. Interior-point methods for non-convex nonlinear programming: Filter methods and merit function [J]. Computational Optimization and Applications, 2002,23:257-272.
  • 4BYRD R H, NOCEDAL J. An analysis of reduced Hessian methods for constrained optimization [J]. Mathematical Programming, 1991, 49: 285-323.
  • 5BIEGLER L T, NOCEDAL J, SCHMID C. Numerical experience with a reduced Hessian method for large-scale constrained optimization [J]. Computational Optimization and Applications, 2000, 15: 45-67.
  • 6MURTAGH B A, SAUNDERS M A. MINOS5.1 User's Guide [R]. Old Union:Department of Operation, Standford University, 1987.
  • 7BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta Numerica, 1995,4:1-51.
  • 8BIEGLER L T, NOCEDAL J, SCHMID C. A reduced hessian method for large-scale constrained optimization[J]. SIAM Journal of Optimization, 1995, 5: 314-347.
  • 9VANSANTHARAJAN S, BIEGLER L T. Large-scale decomposition for successive quadratic programming [J]. Computers and Chemical Engineering, 1988, 12: 1087-1103.
  • 10SCHMID C. Reduced hessian successive quadratic programming for large-scale process optimization [D].Pittsburgh PA,USA:Carnegie Mellon University, 1994.

共引文献15

同被引文献39

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部