期刊文献+

一种新型随机有限元法 被引量:13

A New Method of Stochastic Finite Element
下载PDF
导出
摘要 将Legendre积分法应用于随机结构的有限元分析,针对多随机变量非线性问题,建立基于Legendre积分法的随机有限元算法及列式。选择不同的Legendre积分点数目进行算例分析,并用MonteCarlo法的计算进行对比,考察该方法的有效性。计算结果显示,单随机变量问题在很少样本点的情况下,一阶矩、二阶矩既有较高的精度,在选点数较多时,多随机变量问题的一阶矩、二阶矩也有足够的精度。考虑到计算上有很高的效率,该方法在随机有限元的计算上具有一定的价值。 Appling the Legendre integrate method into multi random variables nonlinear stochastic finite element method, a new stochastic FEM algorithm was established. Examples are put forward, using different sorts of integrate points and verified by Monte Carlo stochastic FEM. The result shows that for single random variable, the first、second order moment reach high precision although the integrate points is fewer; for multi random variables, the precision of the first、second order moment is acceptable on the condition of relatively more points. Considering the high efficiency, the new stochastic finite element method is a valuable algorithm.
作者 杨杰 陈虬
出处 《力学季刊》 CSCD 北大核心 2004年第4期518-522,共5页 Chinese Quarterly of Mechanics
基金 国家自然科学基金 中国工程物理研究院联合资助项目(10076014)
关键词 Legendre积分 MONTE-CARLO法 随机有限元 the Legendre integrate Monte Carlo stochastic FEM moment
  • 相关文献

参考文献5

  • 1G. I. Schueller. Computational stochastic mechanics-recent advances [J]. Computers & Structures, 2001, 79:2225-2234.
  • 2Papadrakakis M, Kotsopoulos A. Parallel solution methods for stochastic finite element analysis using Monte-Carlo simulation [J]. Comput Methods Appl Mech Engrg, 1999, 168:305-320.
  • 3Deb M K, Babuska I M, Oden J T. Solution of stochastic partial differential equations using Galerkin finite element techniques [J].omput Methods Appl Mech Engrg, 2001, 190:6359-6372.
  • 4Matthies H G, Brenner C E, Bucher G C, Soares C G. Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic inites elements [J]. Structural Safety, 1997, 19(3):283-336.
  • 5Zhao Y G, Ono T. New point estimates for probability moments [J]. Structure Safer, 2000, 2.

同被引文献143

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部