期刊文献+

一种混沌贝叶斯优化算法 被引量:3

An Optimization Algorithm Combining Chaotic Sequences with Bayesian Optimization Algorithm
下载PDF
导出
摘要 为了减少贝叶斯优化算法的计算量,该文提出了一种混沌贝叶斯优化算法。用混沌随机序列产生贝叶斯优化算法的初始群体,利用混沌随机性、遍历性和对初始条件的敏感性的特点,提供给贝叶斯网络变量空间丰富的信息,有利于建立接近最优的贝叶斯网络。为增加群体的多样性同时减少贝叶斯网络的建立次数,采用混沌搜索方法对贝叶斯网络产生的新解进行变异寻优,以此为基础再建立贝叶斯网络。实验结果表明,与贝叶斯优化算法相比,混沌贝叶斯优化算法能有效减少计算量。 In the paper,to decrease the computational time,an optimization algorithm is proposed by combining chaotic sequences with Bayesian optimization algorithm (BOA).By using the chaotic properties of ergodicity,stochastic property,and sensitivity to the initial condition,the chaotic sequences are used to initialize the BOA's population to provide the Bayesian network with abundant information of the variable space,which is in favor of constructing a better Bayesian network.To increase the population diversity and reduce the construction times of the Bayesian network,chaos search is adopted to improve the solutions generated by the Bayesian network,and then the improved solutions are used to construct the next Bayesian network.The experimental results indicate that,by compared with the BOA,the proposed algorithm can reduce the computational time efficiently.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第36期95-97,共3页 Computer Engineering and Applications
关键词 混沌序列 贝叶斯网络 遗传算法 优化 chaotic sequences,Bayesian network,genetic algorithm,optimization
  • 相关文献

参考文献9

  • 1Pelikan M et al.A survey of optimization by building and using probabilistic models[R].IlliGAL Rep: 99018, UIUC, IlligiGAL Genetic Algorithm Laboratory, 1999
  • 2Pelikan M,Sastry Kumara,Goldberg D E.Scalability of the Bayesian optimization algorithm[J].International Journal of Approximate Reasoning,2002;31 (3):221~258
  • 3Heckerman D.A tutorial on learning with Bayesian networks,Microsoft Research Advanced Technology Division[R].Microsoft Technical Report No MSR-TR-95-06,1995
  • 4文沃根.在分形理论应用中构建随机数发生器[J].测绘科学,2001,26(2):42-45. 被引量:4
  • 5Ervin Laszlo著.闵家胤译.进化-广义综合理论[M].北京:社会科学文献出版社,1988
  • 6C格里博格,J A约克编.杨立,刘巨斌译.混沌对科学和社会的冲击[M].长沙:湖南科学技术出版社,2001
  • 7周燕,覃朝玲.用混沌法产生随机数发生器的研究[J].西南师范大学学报(自然科学版),2000,25(2):150-154. 被引量:9
  • 8Riccardo Caponetto et al.Chaotic sequences to improve the performance of evolutionary algorithms[J].IEEE Transactions on Evolutionary computation, 2003; 7 (3): 289~304
  • 9林亚平.概率分析进化算法及其研究进展[J].计算机研究与发展,2001,38(1):43-49. 被引量:27

二级参考文献34

  • 1[1]Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: Michigan Press, 1975
  • 2[2]Goldberg D E. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989
  • 3[3]Harik G, Goldberg D E. Linkage learning. In: Belew R et al eds. Foundations of Genetic Algorithms 4. San Mateo, CA: Morgan Kaufmann, 1996
  • 4[4]Muehlenbein H. Evolutionary algorithms: Theory and applications. RWCP Theoretical Foundation GMD Laboratory, Tech Rep: GMD-AS-GA-94-02, 1994
  • 5[5]Harik G. Linkage Learning via probabilistic modeling in the ECGA. University of Illinois at Urbana-Champaign, IlliGAL Rep: 99010, 1999
  • 6[6]Goldberg D E. A meditation on the application of genetic algorithms. University of Illinois at Urbana-Champaign, IlliGAL Rep:98003, 1998
  • 7[7]Kargupta H. Revisiting GEMGA: Scalable evolutionary optimization through linkage learning. In: Proc of IEEE Int'l Conf on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1998
  • 8[8]Harik G et al. The compact genetic algorithm. In: Proc of the 1998 IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1998. 523~528
  • 9[9]Pelikan M, Muehlenbein H. Marginal distributions in evolutionary algorithms. In: Proc of the Int'l Conf on Genetic Algorithm Mendel'98 Brno, 1998. 90~95
  • 10[10] Knjazew D, Goldberg D E. OMEGA-Ordering messy GA: Solving permutation problems with the fast messy genetic algorithm and random. University of Illinois at Urbana-Champaign, IlliGAL Rep: 000004, 2000

共引文献37

同被引文献22

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部