期刊文献+

第五类Painlevé方程解的渐近性态分析

Asymtotics of the general fifth Painleve equation
下载PDF
导出
摘要 首先对Painleve方程求出数值解,然后用最小二乘法拟合出最佳渐近解,对最佳渐近解的表达式形式,用谐波平衡法方法得到振荡渐近解与参数之间的依赖关系.先前用此方法已对第三、四类Painleve方程的振荡渐近解做了一些研究.当参数α,β,δ,γ满足一些条件时,用同样的方法,对第五类Painleve方程给出了渐近解的形式,并找出这类渐近解与参数之间的关系. The numerical solution for Painleve equation is given firstly, then the optimal asymptotics solution is found using the least square method. For expression of the optimal asymptotics solution, the relation of the oscillating solution depending on parameter is obtained by using the method of resonance wave equilibrium. By applying this method , the study was carried out for the scillating solutions of the third and four Painleve equations before. In this paper, when parameters α,β,δ,γ satisfy certain conditions, the oscillating solution for the fifth Painleve equation is found out by applying the same method in accordance with the relation of the parameter.
出处 《山东理工大学学报(自然科学版)》 CAS 2004年第6期31-35,共5页 Journal of Shandong University of Technology:Natural Science Edition
关键词 渐近解 渐近性态 方程解 谐波平衡法 最小二乘法拟合 数值解 表达式 参数 形式 方法 Painleve equation oscillating solution asymptotics
  • 相关文献

参考文献7

  • 1商妮娜,秦惠增.第三类Painlevé方程解的渐近性态分析[J].山东理工大学学报(自然科学版),2004,18(1):54-57. 被引量:3
  • 2秦惠增,商妮娜.第四类Painlevé方程解的渐近性态分析[J].山东理工大学学报(自然科学版),2004,18(2):12-15. 被引量:2
  • 3Gamier R. Contributionia Petude des solutions de l'equation (V) de Painleve[J]. J. Math. Pures. Appl, 1967,46: 353-412.
  • 4Kitaev A V, The method of isomondromy deformations and the asymptotics of solutions of the "completele" third Painleve equation[ J ].Math. USSR Sbomik, 1987,62:421-444.
  • 5Shimomura S. On solutions of the fifth Painleve eqution on the positive real axis Ⅰ[J]. Funkcialaj Ekvacioj, 1985,28:341-370.
  • 6Shimomura S. On solutions of the fifth Painleve eqution on the positive real axis Ⅱ [J], Funkcialaj Ekvacioj, 1987,28: 203-224.
  • 7Lu Youmin, McLeod J B. Asymtotics of the Nonnegative Solutions of then General Fifth Painleve Equation[J ]. Applicable Analysis. 1999,72(3-4): 501-517.

二级参考文献18

  • 1Ovldiu Costin, Rodica D. Costin Asymptotis Properties of a Family of Solutions of the Painlevé Equation[J]. IMRN, 2002,No. x.
  • 2Gamier R. Contributionia Pétude dés solutions de l'equation (V)de Painlevé[J]. J.Math. Pures. Appl, 1967,46:353-412.
  • 3Kitaev A V. The method of isomondromy deformations and the asymptotics of solutions of the "completele" third Painlevé equation[J]. Math. USSR Sbornik, 1987,62:421-444.
  • 4Shimomura S. On solutions of the fifth Pairdevé equation on the positive real axis I[J]. Funkcialaj Ekvacioj, 1985,28:341-370.
  • 5Shimomura S. On solutions of the fifth Pairdevé equation on the positive real axis Ⅱ[J]. Funkcialaj Ekvacioj, 1987,28:203-224.
  • 6LU Youmin. Asymtotics of the Nonnegative Solutions of the General Fifth Painlevé Equation[J]. Applicable Analysis, 1999,72(3-4) :501- 517.
  • 7Mazzocco M. Picard and Chazy Solutions to Pairdevé VI equation[J]. Math. AG/9901054vl. 1999, (1) : 1-35.
  • 8Mazzocco M. Rational Solutions to Painlevé VI equation[ J ]. nlin. Si/0007036, 2000,24:1-13.
  • 9Garnier R. Contributionia Pétude dés solutions de l' equation(V)de Painlevé [J]. J. MathR. Pures. Appl, 1967,46:353-412.
  • 10Kitaev A V. The method of isomondromy deformations and the asymptotics of solutions of the" completele" third Painlevé equation [J].Math. USSR Sbornik, 1987,62:421-444.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部