期刊文献+

Hybrid Genetic Algorithm Based Optimization of Coupled HMM for Complex Interacting Processes Recognition 被引量:1

下载PDF
导出
摘要 Coupled Hidden Markov Model (CHMM) is the extension of traditional HMM, which is mainly used for complex interactive process modeling such as two-hand gestures. However, the problems of finding optimal model parameter are still of great interest to the researches in this area. This paper proposes a hybrid genetic algorithm (HGA) for the CHMM training. Chaos is used to initialize GA and used as mutation operator. Experiments on Chinese TaiChi gestures show that standard GA (SGA) based CHMM training is superior to Maximum Likelihood (ML) HMM training. HGA approach has the highest recognition rate of 98.0769%, then 96.1538% for SGA. The last one is ML method, only with a recognition rate of 69.2308%.
出处 《High Technology Letters》 EI CAS 2004年第3期82-85,共4页 高技术通讯(英文版)
基金 国家自然科学基金
  • 相关文献

同被引文献5

  • 1NICOLETTI,G M.Artificial neural networks (ANN) as simulators and emulators-an analytical overview[C]// Proceedings of the 2nd International Conference on Intelligent Processing and Manufacturing of Materials.[S.l.]:IEEE Press,1999,2:713-721.
  • 2KIM Y J,CHUNG J H.Signal bias removal based GMM for robust speaker recognition[C]// Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing.[S.l.]:IEEE Press,2002,4:13-17.
  • 3贺前华,韦岗,陆以勤.基因算法研究进展[J].电子学报,1998,26(10):118-122. 被引量:23
  • 4贺前华,韦岗,金连文.基于遗传算法的HMM最小错识率训练方法[J].电路与系统学报,1999,4(4):46-50. 被引量:2
  • 5赵力,邹采荣,吴镇扬.HMM在说话人识别中的应用[J].电路与系统学报,2001,6(3):51-57. 被引量:10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部