期刊文献+

边坡角设计的支持向量机建模与精度影响因素研究 被引量:7

RESEARCH ON MODEL CONSTRUCTION OF SUPPORT VECTOR MACHINE AND PRECISION-INFLUEUCING FACTORS OF SLOPE ANGLE DESIGN
下载PDF
导出
摘要 运用人工智能领域最新的基于结构风险最小化原理的机器学习算法——支持向量机(SVM)算法,采用线性Linear 和径向基函数 RBF 两种核函数以及ε 不敏感和 Quadratic 两种损失函数,并且考虑惩罚参数 C 的不同,编写了相应的程序对影响边坡角设计的诸多因素进行了机器学习,经过反复调整相关参数和计算对比,找到了拟合精度很高的支持向量机网络,并以此网络对测试样本作预测检验模型的可靠性;对影响支持向量机建模精度的各种影响因素作了计算和分析,在此基础上,初步确定了各参数对 SVM 模型精度影响大小的顺序,为 SVM 在类似工程上的应用提供了借鉴。 Based on the structural risk minimization principle, a support vector machine (SVM) algorithm, the best machine learning algorithm in the artificial intelligence field today, is introduced. Two kinds of kernel functions( linear and radial basis function) and two kinds of loss functions (Ε-insensitive and quadratic) and different penalty parameter C are adopted to program a SVM routine in Matlab. Using the developed SVM model, many influencing factors of slope angle design are analyzed. With continued parameter modification and comparative calculations, a SVM network model with high accuracy of fitting was established. The reliability of this SVM network model is verified by sample testing, where many kinds of accuracy influencing factors of the SVM model are considered. The precision influencing sequence of these parameters is confirmed based on the calculation results, providing reference for similar engineering applications.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2005年第2期328-335,共8页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(50078002)
关键词 边坡工程 边坡角设计 支持向量机建模 机器学习与预测 参数分析 Artificial intelligence Forecasting Learning algorithms Mathematical models Risk assessment
  • 相关文献

参考文献14

二级参考文献24

  • 1夏元友,朱瑞赓,李新平.边坡稳定性研究的综述与展望[J].金属矿山,1995,24(12):9-12. 被引量:29
  • 2冯夏庭.智能岩石力学及其在岩土工程中的应用:岩土力学新计算方法讲义[R].武汉:中国科学院武汉岩土力学研究所,1999..
  • 3[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 4[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 5[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 6[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 7[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 8[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 9[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 10[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997

共引文献327

同被引文献73

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部