期刊文献+

基于新定义信息熵的目标检测算法 被引量:8

A Target Detection Algorithm Based on New Definition of Information Entropy
下载PDF
导出
摘要 将对图像处理有效的e指数定义的信息熵用于目标检测问题中,该信息熵克服了log对数信息熵的不足.仿真结果表明,两种不同信息熵的定义对目标的不确定性描述具有近乎相同的效果,但是指数定义与对数定义下的信息增量相比,避免了信息中无定义值和零值的产生.* The exponential behavior is very efficient in image processing, when used in target detection in this paper, it is efficient too, and it also overcomes the shortage of logarithmic behavior. Simulation results show that the two different definitions of entropy have approximately the same effect on the uncertainty of targets, but compared with the logarithmic behavior of Shannons entropy, this new definition of entropy avoids the undefined and zero values of information.
作者 周林 刘先省
出处 《信息与控制》 CSCD 北大核心 2005年第1期119-122,共4页 Information and Control
基金 国家自然科学基金资助项目(60272024) 河南省高校杰出科研人才创新工程资助项目(2003KYCX003)
关键词 目标检测 信息熵 信息增量 传感器管理 target detection information entropy information gain sensor management
  • 相关文献

参考文献7

  • 1McIntyre G A, Hintz K J. An information theoretic approach to sensor scheduling [A]. Proceedings of 1996 SPIE International Symposium on Aerospace/Defense Sensing & Control [ C]. Orlando, FI,USA: SPIE ,1996. 304~312.
  • 2Clouqueur T, Phipatanasuphom V, Ramanathan P, et al. Sensor deployment strategy for target detection [ A ]. Proceedings of the 1 st ACM International Workshop on Wireless Sensor Networks and Applications [C]. Atlanta, Georgia, USA: ACM Press,2002.42~48.
  • 3Kastella K. Discrimination gain to optimize detection and classification [ A ]. Proceedings of the SPIE Signal and Data Processing of Small Targets [C]. San Diego, CA, USA: SPIE ,1995. 66 ~70.
  • 4刘先省,申石磊,潘泉,张洪才.基于信息熵的一种传感器管理算法[J].电子学报,2000,28(9):39-41. 被引量:35
  • 5刘先省,李声威,潘泉,张洪才.基于概率统计模型的一类传感器管理方法[J].控制理论与应用,2001,18(5):805-807. 被引量:9
  • 6Hintz K J. A measure of information gain attributable to cueing [ J ]. IEEE Transactions on Systems, Man, and Cybemetics,1991, 21 (2): 434 ~441.
  • 7Pal N R , Pal S K. Entropy: a new definition and its applications [ J ]. IEEE Transactions on Systems, Man, and Cybernetics,1991,21(5): 1260 ~1270.

二级参考文献7

  • 1[1]Kastella Keith and Musick Stat. Comparison of sensor management strategies for detection and classification [A]. 9th National Symposium on Sensor Fusion [ C], Monterey, CA, 1996
  • 2[2]Kastella Keith. Discrimination gain to optimize detection and classification[J]. IEEE Trans. on Syst. Man, and Cybem., 1997, 27(1):112- 116
  • 3[3]Mclntyre G A and Hintz K J. An information theoretic approach to sensor scheduling [A]. In: Signal Processing , Sensor Fusion and Target Recognition V of the SPIE Proceedings [ C ], Orlando, FL,Bellingham, WA, 1996, 2755:304-312
  • 4[4]Jazwinski A H. Stochastic Process and Filtering Theory[M]. New York: Academic Press, 1970
  • 5[5]David A Castanon. Optimal search strategies in dynamic hypothesis testing[J]. IEEE Trans. on Syst. Man, and Cybem., 1995, 25(7): 1130 - 1138
  • 6Liu Xianxing,Chin J Aeronaut,2000年,13卷,1期
  • 7David A,IEEE Trans S M C,1995年,25卷,7期,1130页

共引文献38

同被引文献53

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部