期刊文献+

销售量预测的支持向量机建模及参数选择研究 被引量:16

Study on the Support Vector Machines Model for Sales Volume Prediction and Parameters Selection
下载PDF
导出
摘要 支持向量机(SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,针对企业销售量预测问题,利用支持向量机构建其预测模型,对预测模型进行了仿真及对比实验,证实了模型的有效性。并介绍了SVR理论,同时对于SVR模型参数的选择问题进行了研究。 Support vector machine is a learning technique based on the structural risk minimization principle, and it is also a class of regression method with good generalization ability. Support vector machine is used to model enterprise sale amount prediction, and the theory of SVR is briefly described. A simulation example is taken to demonstrate correctness and effectiveness of the proposed approach. The selection method of the model parameters is presented.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第1期33-36,共4页 Journal of System Simulation
基金 国家自然基金资助项目(60172063)教育部博士点基金项目(20010004004)
关键词 销售量 统计学习理论 支持向量回归 预测 sales volume statistical learning theory support vector regression prediction
  • 相关文献

参考文献10

  • 1乔忠,陈新辉,刘石球.关于企业产品销售量的模糊预测[J].中国管理科学,2001,9(6):31-35. 被引量:10
  • 2范宏,王直杰,汤兵勇.基于遗传算法的神经网络销售量预测模型[J].系统工程理论方法应用,1998,7(3):17-21. 被引量:3
  • 3李自光,杜荣华,颜荣庆.基于神经网络的机电产品预测分析系统的研究与开发[J].长沙交通学院学报,2000,16(2):30-34. 被引量:1
  • 4David C, Schmittlein, Donald G Morrison, Richard Colombo. Counting your customers:who are they and what will they do next?[J].Management Science, 1987, 33(1): 1-24.
  • 5David C, Schmittlein, Robert A Peterson. Customer Base Analysis: An Customer Value[J]. Harvard Business Review, 1998, 卷(11): 53-67.
  • 6Vapnik V. The Nature of Statistical Learning Theory[M].Springer-Verlag, New York, 1995.
  • 7Nello Cristiartini, John Shawe-Taylor. An Introduction to Support Vector Machines and other Kernel-based learning methods[M]. Cambridge University Press, 2000.
  • 8Steve R Gunn. Support Vector Machines for Classification and Regression Technical Report[R], University of Sounthampton, 1998.
  • 9Gunn S. Support Vector Machines Classification and Regression[R].ISIS Technical Report. Image Speech & Intelligent Systems Group,University of Southampton, 1998.
  • 10Smola Alex J, Scholkopf B. A Tutorial on Support Vector Regression[R].NeuroCOLT2 Technical Report Series NC-TR-98-030, Royal Holloway College, University of London, UK, 1998.

二级参考文献9

共引文献11

同被引文献109

引证文献16

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部