期刊文献+

聚类算法在基因表达数据分析中的应用 被引量:4

Application of Clustering Algorithms to the Analysis of Gene Expression Data
下载PDF
导出
摘要 聚类算法在基因表达数据的分析处理中得到日益广泛的应用 .文中对几种典型的聚类算法进行描述 ,对各算法在基因表达数据处理中的特点 ,进行评价并提出改进的策略 .最后 ,指出聚类算法在生物信息学应用中的发展趋势 . Clustering algorithms have become increasingly important in analyzing and processing gene expression data. Several typical clustering methods are described here. After estimating the characteristic of clustering methods in processing gene expression data, some strategies for its improvement are proposed; and the trend of applying clustering algorithms to bioinformatics is pointed out.
作者 朱婵 许龙飞
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2005年第1期7-10,共4页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目 (60 3 740 70 ) 广东省自然科学基金资助项目 (0 3 1 90 3 )
关键词 生物信息学 基因表达数据 聚类算法 bioinformatics, gene expression, data, clustering algorithm
  • 相关文献

参考文献11

  • 1孙啸,王晔,何农跃,赵雨杰,陆祖宏.生物信息学在基因芯片中的应用[J].生物物理学报,2001,17(1):27-34. 被引量:20
  • 2BaldiP BrunakS著 张东晖译.生物信息学-机器学习方法[M].北京:中信出版社,2003.276-279.
  • 3王富刚,陈先农.基因芯片数据的聚类分析[J].国外医学(生物医学工程分册),2004,27(2):98-101. 被引量:8
  • 4Raychaudhuri S,Chang J T,Imam F,et al. The computational analysis of scientific literature to define and recognize gene expression clusters[J]. Nucleic Acids Research, 2003,15: 4 553~4 560.
  • 5Wicker N,Dembele D,Raffelsberger W,et al. Density of points clustering,application to transcriptomic data anaylsis[J]. Nucleic Acids Research, 2002,(18):3 992~4 000.
  • 6Li Liao,Noble W S. Combining pairwise sequence similarity and support vector machines for remote protein homology detection[J]. Recomb, 2002, (18):255~232.
  • 7Kalton A,Wagstaff K,Yoo J. Generalized clustering,supervised learning, and data assignment [J]. KDD, 2001,(1):299~304.
  • 8Eisen M, Spellman P, Brown P, et al.Cluster analysis and display of genome-wide expression patterns[J].Proc. Natl. Acad Sci. US,1998,(95):14 683~14 688.
  • 9Kohonen T. Self-organizing maps[M]. 3rd ed. Heidelherg: Springer, 2001. 25~40.
  • 10Bickel D R.Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically[J].Bioinformatics,2003,19(7):818~824.

二级参考文献19

  • 1Lukashin AV, Fuchs R. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters[J]. Bioinformatics, 2001, 17: 405-414.
  • 2Dudoit S, Yang YH, Callow MJ, et al. Statistical methods for identifying differenctially expressed genes in replicated cDNA microarray experiments[J]. Statistica Sinica, 2002,12:111-139.
  • 3Mclachlan GJ, Bean RW, Peel D. A mixture model-based approach to the clustering of microarray expression data[J]. Bioinformatics, 2002,18: 413-422.
  • 4Smet FD, Mathys J, Marchal M, et al. Adaptive quality-based clustering of gene expression profiles [J]. Bioinformatics, 2002, 18: 735-746.
  • 5Whitfield CW, Cziko AM, Robinson GE. Gene expression profiles in the brain predict behavior in individual honey bees[J]. Science, 2003,302: 296-299.
  • 6Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data[J]. Bioinformatics, 2002, 18:39-50.
  • 7Rhodes DR, Miller JC, Haab BB. CIT: identification of differentially expressed clusters of genes from microarray data[J]. Bioinformatics,2002, 18: 205-206.
  • 8Sturn A, Alatko JQ. Genesis: cluster analysis of microarray data[J].Bioinformatics, 2002, 18: 207-208.
  • 9Xia Xu-hua, Xie Zheng. AMADA: analysis of microarray data [J].Bioinformatics, 2001, 17: 569-570.
  • 10Bozinov D, Rahnenfuhrer J. Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering[J]. Bioinformatics, 2002,18: 747-756.

共引文献25

同被引文献31

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部