期刊文献+

单神经元无辨识自适应预估控制算法及在过热汽温控制中的仿真研究 被引量:13

ADAPTIVE PREDICTIVE CONTROL ALGORITHM OF SINGLE NEURONIDENTIFICATION-FREE ALGORITHM AND SIMULATION RESEARCH OFSUPERHEATED STEAM TEMPERATURE CONTROL
下载PDF
导出
摘要 为了实现非线性、大时滞系统的良好控制,提出了一种新型的无辨识自适应预估控制算法。该算法将神经元结合到无辨识自适应控制律中,借鉴推导无辨识自适应控制参数自校正算式的基本思想建立约束条件,据此选择适当的权值取代原控制参数,并用加入动量项的改进δ算法取代该参数的校正计算式,提高控制参数的自校正能力。将该算法应用于600MW超临界机组直流锅炉的过热汽温控制,进行仿真研究,结果表明该算法的有效性,并具有良好的控制品质,较强的鲁棒性和自适应能力;且该算法对预估模型的精度要求不高,控制参数容易整定,易于工程实现。 For implementing excellent control to nonlinear systems with long time-delay, a novel adaptive predictive control algorithm of identification-free algorithm is proposed by combining a single neuron with the identification-free adaptive control algorithm. The restriction condition to select an appropriate weight to replace the original control parameter, is derived based on the basic principle applied to derive the self-adjusting equation of the identification-free control parameter. And the improved 8 weight-learning algorithm with momentum item replaces the self-adjusting equation in order to enhance its self-adjusting ability. A simulation for superheated steam temperature control of a supercritical once-through 600MW boiler using presented algorithm is carried out, and the results show the applicability, the excellent control performance and enhanced robustness and self-adaptability of the scheme in solving complicated system. The control parameters are easy to set because of undemanding precision to the predictive model, therefore, the scheme is easy for application.
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第2期103-108,共6页 Proceedings of the CSEE
基金 广西科学基金项目(桂科自0135065桂科基0448012)
关键词 单神经元无辨识自适应预估控制算法 数学模型 火电厂 锅炉 过热器 汽温控制 Thermal Power engineering Predictive control Identification-free Adaptive control Neuron Superheated steam temperature
  • 相关文献

参考文献10

二级参考文献46

  • 1吕剑虹,陈来九.模糊PID控制器及在汽温控制系统中的应用研究[J].中国电机工程学报,1995,15(1):16-22. 被引量:57
  • 2石兆三.模糊控制在热力过程控制中的应用[J].中国电力,1995,28(4):46-51. 被引量:12
  • 3[6]Jang J S R, Self-learning fuzzy controllers based on temporal back propagation[J], IEEE Trans. Neural Networks, 1992, 3(5):714-723.
  • 4[7]Yager R, Implementing fuzzy logic controllers using a neural network framework[J]. Fuzzy Sets and Systems, 1992, 48(1):53-64.
  • 5[8]Zhi-Wei Woo, Huang-Yuan Chung, Jin-Jye Lin., A PID type fuzzy controller with self-tuning scaling factors[J]. Fuzzy set and system, 2000, 115(2):321-326.
  • 6[9].Qiao W Z. Mizumoto M, PID type fuzzy controller and parameters adaptive method[J]. Fuzzy sets and systems, 1996, 78(1):23-35.
  • 7[10]James,Carvajar,Guangrong Chen. Fuzzy PID Controller: Design, performance evaluation, and stability analysis[J]. Information Sciences, 2000, 123(3):249-270.
  • 8[11]陈来九(Chen Laijiu). 热工自动调节原理和应用(The theory and application of the automatic regulation for thermal processes )[M]. 北京:水利电力出版社(Beijing:Water Resource and Electric Power Press),1982:324-327.
  • 9[12]张化光(Zhang Huaguang). 热工过程的模糊辨识与控制(Fuzzy identification and control for thermal processes)[D]. 南京:东南大学(Nanjing:Southeast University), 1991.
  • 10[1]Kuipers B j.Qualitative Reasoning,Modeling and simulation with incomplete knowledge[M].Cambrige,MA,MIT Press,1994.

共引文献440

同被引文献99

引证文献13

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部