摘要
本文讨论一类抛物型偏微分方程反问题,研究测量值在特定边界上给定时源项确定的稳定性,在合理的假设下证明了该反问题具有按Lipschitz型连续依赖于测量值的稳定性,推广了Yamamoto的结果.
This paper discusses an inverse problem for a class of parabolic differential equations, and studies the stability in determination of force terms when the observation data are obtained on the overspecified boundary. It is proved that, under suitable hypotheses, the inverse problem possesses the stability of Lipschitz type, which has generalized Yamamoto's results.
出处
《工科数学》
1997年第4期1-5,共5页
Journal of Mathematics For Technology
关键词
抛物型偏微分方程
反问题
连续
源项
证明
稳定性
假设
测量值
依赖
特定
parabolic differential equations, inverse problems for differential equations, stability of Lipschitz type, Laplace transform, Reznitskaya transform.