期刊文献+

一类抛物型偏微分方程反问题的稳定性

On the Stability of an Inverse Problem for a Class of Parabolic Differential Equations
下载PDF
导出
摘要 本文讨论一类抛物型偏微分方程反问题,研究测量值在特定边界上给定时源项确定的稳定性,在合理的假设下证明了该反问题具有按Lipschitz型连续依赖于测量值的稳定性,推广了Yamamoto的结果. This paper discusses an inverse problem for a class of parabolic differential equations, and studies the stability in determination of force terms when the observation data are obtained on the overspecified boundary. It is proved that, under suitable hypotheses, the inverse problem possesses the stability of Lipschitz type, which has generalized Yamamoto's results.
出处 《工科数学》 1997年第4期1-5,共5页 Journal of Mathematics For Technology
关键词 抛物型偏微分方程 反问题 连续 源项 证明 稳定性 假设 测量值 依赖 特定 parabolic differential equations, inverse problems for differential equations, stability of Lipschitz type, Laplace transform, Reznitskaya transform.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部