期刊文献+

基于滚动时域控制的寻的导弹末制导律研究 被引量:2

Terminal Guidance Law Based on Receding Horizon Control for Homing Missile
下载PDF
导出
摘要 针对近距机动目标的拦截 ,设计了基于滚动时域控制的寻的导弹末制导律。本导引律在最优导引律 (OPG)研究成果基础上 ,采用滚动时域控制技术 ,将追踪过程分为若干有限时域的追踪 ,并在每个时域内 ,将追踪过程视为初始条件不断更新的非机动追踪模型 ,进行最优追踪制导 ,反复进行直到截获目标。它无需知道目标的未来运动轨迹 ,能有效追踪拦截机动目标 ,克服了 OPG要求完全知道目标未来运动轨迹的应用条件限制 ,并且简化了计算。仿真研究表明 ,该导引律性能优于 TPN,APN,接近 OPG。该导引律算法简单、有效 ,切合实际 ,可为工程应用提供参考。 To the interception of short r ange maneuvering target, a terminal guidance law for the homing missile is prese nted based on receding horizon control(RHC). On the basis of research achievemen t of optimal guidance law (OPG), it employs the RHC technique to divide the whol e pursuit process into some sequential ones with the finite time horizon. In eac h time region, the optimal control solution to the pursuit problem is implemente d and the target is presumed to move in a non-maneuvering way with initial stat e updated. The process is repeated until the target is intercepted. The designed guidance law can effectively guide the missile to intercept the maneuvering tar get without needing to know the future motion of a target. It overcomes the limi tation to apply OPG,which requires a complete knowledge of the target′s motion is available to the missile, and simplifies calculations. Simulation results sho w that the performance of the designed guidance law is superior to that of TPN a nd APN, and close to that of OPG. Due to the algorithm is simple effective and s uitable to realistic scenarios, it can provide a reference for real engineering application.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第1期52-56,共5页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 滚动时域控制 导引律 机动目标追踪/拦截 仿真 receding horizon control guidance law m aneuvering target pursuit/interception simulation
  • 相关文献

参考文献10

  • 1吴文海,沈春林,耿昌茂,顾颖玲.导引控制延时对追踪捕获性能影响的研究[J].南京航空航天大学学报,2004,36(1):67-71. 被引量:7
  • 2Lin Chingfang. Modern navigation, guidance, and control processing [M]. Prentic-Hall Inc, 1991. 486-492.
  • 3Shukla U S, Mahapatra P R. The proportional navigation dilemma-pure or true[J]. IEEE Transitions on Aerospace and Electronic System, 1990,26 (2) : 382-392.
  • 4Raivio T. Computational methods for dynamic optimization and pursuit-evasion games [D]. Helsinki:Helsinki University of Technology, 2000.
  • 5Wu Wenhai, Shen Chunlin, Geng Changmao. Pursuit-evasion games in flight control of A/C: a review [A].International Congress of Mathematics, Game Theory and Applications Satellite Conference [C]. Qingdao. China,2002. 831-835.
  • 6Yang C D, Yech F B. Optimal proportional navigation[J]. Journal of Guidance, Control and Dynamics, 1988.12(4) :375-377.
  • 7Tsao L P, Lin C S. A new optimal guidance law for short-range homing missiles[A]. Proceeding of Science Council [C]. Taiwan, China, 2000,24 (6) : 422 -426.
  • 8Macmartin D G. Receding horizon control[B/OL]. www. cds. cahech. edu/- macmardg/CDS110h/# Lectures. html,2004-03-02/2004-09-20.
  • 9Shinar J, Glizer V J. Application of receding horizon control strategy to pursuit-evasion problems[J]. Optimal Control Applications & Methods, 1995,16 (2):127-141.
  • 10Kuwata Y, How J. Three dimensional receding horizon control for UAVs[R]. AIAA, 2004. 5144.

二级参考文献9

  • 1Shinar J, Guelman M, Green A. An optimal guidance law for a planar pursuit-evasion game of kind[J]. Computers and Mathematics with Applications, 1989,18(1-3):35~44.
  • 2Mahapatra P R, Shukla U S. The advantages of velocity vector referencing in PN[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990,33(3):102~109.
  • 3Chakravarthy A, Ghose D. Capturability of realistic generalized true proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1):407~418.
  • 4Becker K. Closed-form solution of pure proportional navigation[J]. IEEE Transitions on Aerospace and Electronic Systems, 1990, 26(3):526~532.
  • 5Mahapatra P R, Shukla U S. Accurate solution of proportional navigation for maneuvering targets[J]. IEEE Transitions on Aerospace and Electronic Systems, 1989,2(1):81~89.
  • 6Ha I J, Hur J S, Ko M S,et al. Performance analysis of PNG laws for randomly maneuvering targets[J]. IEEE Transitions on Aerospace and Electronic Systems, 1990,26(5):713~720.
  • 7Dhar A, Ghose D. Capture region for a realistic TPN guidance law[J]. IEEE Transitions on Aerospace and Electronic Systems, 1993,29(3):995~1003.
  • 8Ghose D. Capture region for TPN guidance with non-zero miss-distance[J]. Journal of Guidance, Control and Dynamics, 1993, 17(3):627~628.
  • 9Jae-Hyuk,Ha In-Joong.Capturability of the 3-dimensional pure PNG law[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999,35(2):491~503.

共引文献6

同被引文献22

  • 1李超勇,荆武兴,齐治国,王辉.空间微分几何制导律应用研究[J].宇航学报,2007,28(5):1235-1240. 被引量:19
  • 2ZHU J J, BANKER B D. X-33 ascent flight control de- sign by trajectory linearization-a singular perturbation approach[ R]. Denver, CO: AIAA, 2000:1 - 19.
  • 3BURROWS R R. Variational problems and their solution by the adjoint method [ R]. Huntsville, Ala: Technical Memorandum, 1966, NASA-TM-X-53459.
  • 4SILLY-CARETTE J, LAUTRU D, GATI A, et al. Opti- mization of the homogenization of tissues using the ad- joint method and the FDTD[ C ]//2008 IEEE MTT-S In- ternational on Microwave Symposium Digest. Atlanta, GA : [ s. n. ] ,2008 : 1361 - 1364.
  • 5KATSARGYRI G E, KOLMANOVSKY I, MICHELINI J, et al. Path dependent receding horizon control poli- cies for Hybrid Electric Vehicles [ C ]//2009 IEEE con- ference on Control Applications & Intelligent Control. St. Petersburg, : [s. n. ] , 2009:607 -612.
  • 6MAYNE D Q, MICHALSKA H. Receding horizon con- trol of nonlinear systems [ J]. IEEE transaction on auto- matic control, 1990,35 (7) : 814 - 824.
  • 7LU P. Closed-form control laws for linear time-varying systems[ J]. IEEE Transactions on Automatic Control, 2000,45 ( 3 ) :537 - 542.
  • 8WU F, PACKARD A, BALAS G. LPV control design for pitch-axis missile autopilots[ C ]//Proceedings of the 34th IEEE Conference on Decision and Control. New Orleans, LA:[s. n. ] , 1995:188 -193.
  • 9丁洪波,曹渊,佟卫平,蔡洪.亚轨道飞行器上升段轨迹优化与快速重规划[J].宇航学报,2009,30(3):877-883. 被引量:6
  • 10Zhao Shiyu,Zhou Rui,Wei Chen,Ding Quanxin.Design of Time-constrained Guidance Laws via Virtual Leader Approach[J].Chinese Journal of Aeronautics,2010,23(1):103-108. 被引量:37

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部