期刊文献+

天气影响的场景影像复原方法 被引量:5

A restoration method for atmosphere degraded scene image
下载PDF
导出
摘要 提出了一种适用于恶劣天气下退化图像复原的简化算法。该算法利用大气辐射传输方程的数值解构造点扩散函数,可用于不同天气条件下的退化图像的复原。根据恶劣天气中散射粒子的前向散射系数大的特点,引入δ 函数,将相函数进行归一化分解;把得到的简化点扩散函数作为大气的退化函数,与退化图像一起进行频域复原滤波。实验结果表明,对于 512×512 的雾天场景图像,复原处理前后信噪比从 3.6400 提高到 8.5329;比较具有相同信噪比的复原图像,简化算法的处理耗时比简化前减少了 85%。 A simplified algorithm suitable for restoring fully degraded images under bad weather conditions is proposed. The numerical value solution of atmospheric radiation transmission equation (RTE) is used to construct point spread function and implement the restoration of all kinds of atmosphere degraded images under different weather conditions. The function δ is introduced according to the property of the large forward scattering coefficient of the scattering particles in bad weather and the decomposition for phase function is normalized. By using the obtained simplified point spread function as atmosphere degraded function and together with the degraded image, one can restore the image through filtering in frequency domain. The experimental results show that for a 512×512 scene image in foggy day, the signal-noise-ratio gained by the new algorithm has been improved from 3.6400 to 8.5329 in comparison with the image before restoration and the processing time consumption decreases by 85% than before.
作者 刘锦锋 黄峰
出处 《光电工程》 EI CAS CSCD 北大核心 2005年第1期71-73,共3页 Opto-Electronic Engineering
关键词 图像复原 信噪比 相函数 多重散射 Image restoration Signal-noise ratio Phase function Multiple scattering
  • 相关文献

参考文献3

  • 1桑梓勤,丁明跃,张天序.雨雾天气下的户外场景成像[J].电子学报,2000,28(3):131-133. 被引量:19
  • 2Srinivasa G. NARASIMHAN S,Shree K. NAYAR. Shedding light on the weather[A]. Proceedings of the IEEE Computer Vision and Pattern Recognition[C]. Madison:IEEE CS Press,2003. 665-672.
  • 3Srinivasa G. NARASIMHAN S,Shree K. NAYAR. Interactive (de)weathering of an image using physical models [EB/OL]. http : //www1.cs. columbia.edu/~srinivas/publications.html,2003-12-27/2004-05-10.

二级参考文献11

共引文献18

同被引文献38

  • 1董慧颖,方帅,王欣威,徐心和.基于物理模型的恶化天气下的图像复原方法及应用[J].东北大学学报(自然科学版),2005,26(3):217-219. 被引量:7
  • 2周卫星,廖欢.基于高频强调滤波和CI.AHE的雾天图像增强方法[J].数字视频,2010(7):38-40.
  • 3胡大南,何涛.基于雾天环境下图像增强方法研究[J].科技论坛,2011(2):14-15.
  • 4ROSENMAN J, ROE C A, CROMATRIE R. Portal film enhancement : technique and clinical utility [ J ]. Interna- tional Journal of Radiation Oneology, Biol%,y, Physics, 1993,25 (2) : 333 - 338.
  • 5John P. Oakley, Brenda L. Sathedey. Improving Image Quality in Poor Visibility Conditions Using a Physieal Model for Contrast Degradation [ J ]. IEEE TRANSAC- TIONS ON IMAGE PROCESSING, 1998, 7 ( 2 ) : 167 - 179.
  • 6GREWE L L,BROOKS R R. Atmospheric attenuation reduction through muLTisensor fusion[J].Sensor Fusion:Architectures Algorithms and Applications Ⅱ,1998,(10):102-109.
  • 7OAKLEY J P,SATHERLEY B L. Improving image quality in poor visibility conditions using a physical model for degradation[J].IEEE Transactions on Image Processing,1998,(02):167-179.
  • 8NAYAR S K,NARASIMHAN S G. Vision in bad weather[A].1999.820-827.
  • 9NARASIMHAN S G,NAYAR S K. Removing weather effects from monochrome images[A].2001.186-193.
  • 10NARASIMHAN S G,NAYAR S K. Contrast restoration of weather degraded images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,(06):713-723.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部