期刊文献+

表面等离子共振氢敏传感器理论和模拟 被引量:2

Theory and simulation of surface plasma resonance hydrogen sensor
下载PDF
导出
摘要 提出了一种钯(Pd)膜氢敏感表面等离子共振传感器结构,该传感器以镀在棱镜端面的 Pd作为氢敏感膜。Pd 膜吸氢以后发生化学反应,生成的 PdHx使折射率发生变化,同时,它作为金属膜产生 SPW,当折射率变化时又在金属和介质表面产生表面等离子共振。利用 Fortran 语言程序进行了表面等离子共振氢敏传感器的 Pd 膜厚度和传感器灵敏度数值模拟。氢气浓度的变化引起折射率的变化,数值模拟表明,表面等离子共振氢敏传感器的灵敏度与 Pd 膜厚度有关,当 Pd膜的厚度在 10-30nm 时,氢气浓度在 1%-10%范围内具有较高的灵敏度。这种传感器结构将用于监测氢气作燃料的商用和军用机车的氢气泄漏。 A Surface Plasma Resonance (SPR) hydrogen sensor coated with Pd film on its prism side as hydrogen-sensitive film is proposed. When hydrogen gas is absorbed into the Pd thin layer, a process of chemical reaction occurs and then a Pd hydride (PdHx) is formed, which will change the refraction index with the increase or decrease of gas concentration. At the same time, a SPR occurs because of the excitation of Surface Plasma Wave (SPW) supported by thin metal layer. The numerical simulations for Pd film thickness and sensitivity of the hydrogen sensing system are carried out by Fortran program. The simulation results show that the sensitivity of the surface plasma resonance hydrogen sensor is related to Pd film thickness. When the thickness of Pd film is within the range of 10-30 nm and the hydrogen concentration is within the range of 1%-10%, the system has a high sensitivity. This sensor structure can be applied to detecting hydrogen leakage of commercial and military vehicles with hydrogen as fuel.
出处 《光电工程》 EI CAS CSCD 北大核心 2005年第1期85-88,共4页 Opto-Electronic Engineering
基金 浙江省科技计划重大项目经费资助(001101027)
关键词 氢传感器 表面等离子共振 数值模拟 PD膜 Hydrogen sensor Surface plasma resonance Numerical simulation Pd thin film
  • 相关文献

参考文献11

  • 1Chuck C. JUNG, Elric W. SAASKI, David A. MCCRAE. Fiber optic hydrogen sensor[J]. SPIE, 1998, 3489: 9-15.
  • 2HUNTER Gary W, BRICKFORD Randall L, JANSA E D, et al. Microfabricated hydrogen sensor technology for aerospace and commercial applications [J]. SPIE, 1994, 2270: 77-88.
  • 3Ping LIU, Se-Hee LEE, Hyeonsik M.CHEONG, et al. Stable Pd/V2O5 optical H2 sensor[J]. Journal of The Electrochemical Society, 2002, 149(3): H76-H80.
  • 4Martin N.WCISS, Ramakant SRIVASTAVA, Howard GROGER, et al. A theoretical investigation of environmental monitoringusing surface plasmon resonance waveguide sensors[J]. Sensors and Actuators A, 1996, 51(2-3): 211-217.
  • 5D. L. HETHERINGTON, R.W. GRANT, K. L. HUGHES, et al. A portable low-power hydrogen gas sensor system for widerange H2 detection[J].IEEE Circuits and Systems, 1994, Proceedings of the 37th Midwest Symposium 1994, 1: 199-201.
  • 6Frederic FAVIER, Erich C. WALTER, Michael P. ZACH. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays[J]. Science, 2001, 293(21): 2227-2231.
  • 7X. BEVENOT, A. TROUILLET, C. VEILLAS, et al. Hydrogen leak detection using an optical fiber sensor for aerospace applications [J]. Sensors and Actuators B, 2000, 67(1-2): 57-67.
  • 8Jiri HOMOLA, Simclair S. YEE, Gunter GAUGLITZ. Surface plasmon resonance sensors: review [J]. Sensors and Acuators B, 1999, 54(1-2): 3-15.
  • 9A. CHTANOV, M. GAL. Differential optical detection of hydrogen gas in the atmosphere[J]. Sensors and Actuators B,2001, 79(2-3): 196-199.
  • 10Boonsong SUTAPUN, Massood TABIB-AZAR, Alex KAZEMI. Pd-coated elastooptic fiber optic Bragg grating sensors formultiplexed hydrogen sensing[J]. Sensors and Actuators B, 1999, 60(1): 27-34.

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部