期刊文献+

SUPERCONVERGENCE OF TETRAHEDRAL QUADRATIC FINITE ELEMENTS 被引量:7

原文传递
导出
摘要 For a model elhptic boundary value problem we will prove that on strongly regular families of uniform tetrahedral partitions of a pohyhedral domain, the gradient of the quadratic finite element approximation is superclose to the gradient of the quadratic La-grange interpolant of the exact solution. This supercloseness will be used to construct a post-processing that increases the order of approximation to the gradient in the global L^2-norm。
出处 《Journal of Computational Mathematics》 SCIE CSCD 2005年第1期27-36,共10页 计算数学(英文)
  • 相关文献

参考文献31

  • 1A B Andreev. Error estimate of type superconvergence of the gradient for quadratic triangular elements. C R Acad. Bulgare Sci., 36 (1984), 1179-1182.
  • 2A B Andreev and R D Lazarov, Superconvergence of the gradient for quadratic triangular finite elements, Numer. Methods Partial Differential Equations, 4 (1988), 15-32.
  • 3F A Bornemann, B Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problemsin two and three space dimensions, SIAM J. Numer. Anal., 33:3 (1996), 1188-1204.
  • 4J H Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68:3 (1994), 311-324.
  • 5J H Brandts, Superconvergence for triangular order k = 1 Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods. Appl. Numer. Anal., 34 (2000),39-58.
  • 6J H Brandts and M Krizek, History and future of superconvergence in three-dimensional finiteelement methods. Proc. Conf. Finite Element Methods: Three-dimensional Problems, GAKUTO Internat. Ser. Math. Sci. Appl., 15:24-35, Gakkotosho, Tokyo, 2001.
  • 7C M Chen, Optimal points of stresses for tetrahedron linear element (in Chinese). Natur. Sci. J. Xiangtan Univ., 3 (1980), 16-24.
  • 8P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
  • 9J Douglas, T. Dupont, and M F Wheeler, An l^∞ estimate and a superconvergence result for a Galerkin method for elliptical equations based on tensor products of piecewise polynomials,RAIRO Anal. Numdr., 8 (1974), 61-66.
  • 10J Douglas and J E Roberts, Global estimates for mixed methods for second order elliptic problems, Math. Comp., 44:169 (1985), 39-52.

同被引文献36

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部