期刊文献+

基于SVM的机器人工件识别 被引量:6

Recognition of target by robots based on support vector machine
下载PDF
导出
摘要 支持向量机(SVM)是一种崭新的机器学习方法,建立在结构风险最小化原理基础上,寻找一个最优分类超平面,引进核函数将低维空间向量映射到高维空间.此方法能解决小样本、非线性及高维模式识别中的问题.鉴于此,将SVM应用于多传感器信息融合,并针对多类型目标识别问题,采用“oneagainstall”方法构造多元分类器.实验中比较了采用不同核函数构造的SVM的分类效果,结果表明SVM具有较高的识别率,其中三项多项式核函数构造的SVM的识别率最高,可达到93.2%.另外,还比较了单传感器和多传感器融合的识别结果,单传感器的识别率只有63.7%,大大低于多传感器融合的识别率. Support Vector Machine (SVM) is based on Structure Risk Minimization principle (SRM) is a kind of machine learning method. Many problems with small samples, nonlinearity or high dimension in pattern recognition could be solved by this machine. In this paper, SVM was applied to research multi-sensor data fusion. For multi-target recognition, an approach of “one-against-all” was used to construct multiple class binary classifier. In experiments, the classification effects were based on SVM with different kernel functions were compared. The results showed the high efficiency of recognition and classification by SVM. Especially, SVM with three-polynomial kernel function has the highest classification effect by 93.2%. In addition, the effects with single sensor and multiple sensors were also compared. The recognition rate with single sensor is only 63.7%, being greatly lower than that with multiple sensors.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第2期41-43,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国防预研基金资助项目(00J16.6.3.JW0401).
关键词 支持向量机 数据融合 目标识别 support vector machine data fusion target recognition
  • 相关文献

参考文献8

二级参考文献22

  • 1肖人彬,王雪.相关证据合成方法的研究[J].模式识别与人工智能,1993,6(3):227-234. 被引量:30
  • 2邵远,何发昌,彭健.一种机器人非视觉多传感器信息融合方法[J].电子学报,1996,24(8):94-97. 被引量:18
  • 3朱晓芸,杨建刚,何志钧.神经网络的多传感器数据融合基于新算法在障碍物识别中的应用[J].机器人,1997,19(3):166-172. 被引量:9
  • 4黄崇福.模糊工程[M].西安:西安交通大学出版社,1999.15-40.
  • 5王雪 左巍.机电设备智能故障诊断的多传感器融合技术研究.第6届全国敏感元件及传感器学术会议论文集[M].北京,1999.419-422.
  • 6[1]E Waltz,J Llinas. Multisensor Data Fusion[M].Artech House,1990
  • 7[2]Weixiong Zhang. A Template-Based and Pattern-Driven Application to Situation Awareness and Assessment in Virtual Humans[C].In:Proceedings of the Forth International Conference on Autonomous Agents,Barcelona, Spain, 2000
  • 8[3]Moshe Ben-Bassat,Amos freedy. Knowledge Requirement and Management in Expert Decision Support Systems for(Military) Situation Assessment[J].IEEE Trans on SMC, 1982; 12(4)
  • 9[4]Endsley M R.Situation Awareness in Dynamic System[J].Human Factors, 1995 ;37( 1 )
  • 10[5]Adam X Miao. A Computational Situation Assessment Model for Nuclear Power plant Operations[J].IEEE Trans on SMC, 1997 ;27(6)

共引文献57

同被引文献61

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部