摘要
给出了确定 n 次有理 Bézier 曲线权因子的权系数极大化方法和幂指数型权因子方法。这些方法根据 Bernstein 基函数及其系数来选取权因子。系数极大化方法表示的曲线是一种确定的适合于任意次数的有理 Bézier 曲线,它可以比 Bézier 曲线更好地保持其控制多边形的形状。幂指数型权因子方法给出了有理 Bézier 曲线权因子的有效形式。它既保持了一般有理权因子的局部可调性,又能使形状调整的效果更明显。
A weights maximization method and a method based on the weights of a power exponent form for determining the weights of the rational Bézier curves of degrees are given. The methods are presented according to the Bernstein basis functions and their coefficients. The weights maximization method gives a kind of the weights for arbitrary degree of the rational Bezier curves and generates the curves which preserve the shape of the control polygon better than the Bézier curves. The method based on the weights of the power exponent form gives an effective form of the weights of the rational Bézier curves. The weights are local adjustable, and can provide a clear effect for shape adjustment.
出处
《工程图学学报》
CSCD
北大核心
2005年第1期57-60,共4页
Journal of Engineering Graphics
基金
湖南省自然科学基金资助项目(01JJY2095)
关键词
计算机应用
计算几何
有理BÉZIER曲线
形状修改
computer application
computational geometry
rational Bézier curves
shape modification