期刊文献+

有理Bézier曲线权因子的有效形式 被引量:4

The Effective Forms of the Weights of the Rational Bézier Curves
下载PDF
导出
摘要 给出了确定 n 次有理 Bézier 曲线权因子的权系数极大化方法和幂指数型权因子方法。这些方法根据 Bernstein 基函数及其系数来选取权因子。系数极大化方法表示的曲线是一种确定的适合于任意次数的有理 Bézier 曲线,它可以比 Bézier 曲线更好地保持其控制多边形的形状。幂指数型权因子方法给出了有理 Bézier 曲线权因子的有效形式。它既保持了一般有理权因子的局部可调性,又能使形状调整的效果更明显。 A weights maximization method and a method based on the weights of a power exponent form for determining the weights of the rational Bézier curves of degrees are given. The methods are presented according to the Bernstein basis functions and their coefficients. The weights maximization method gives a kind of the weights for arbitrary degree of the rational Bezier curves and generates the curves which preserve the shape of the control polygon better than the Bézier curves. The method based on the weights of the power exponent form gives an effective form of the weights of the rational Bézier curves. The weights are local adjustable, and can provide a clear effect for shape adjustment.
出处 《工程图学学报》 CSCD 北大核心 2005年第1期57-60,共4页 Journal of Engineering Graphics
基金 湖南省自然科学基金资助项目(01JJY2095)
关键词 计算机应用 计算几何 有理BÉZIER曲线 形状修改 computer application computational geometry rational Bézier curves shape modification
  • 相关文献

参考文献9

  • 1徐立,陈玉健,胡毓宁.基于约束优化的Bézier曲线的形状修改(英文)[J].软件学报,2002,13(6):1069-1074. 被引量:10
  • 2韩旭里,刘圣军.三次均匀B样条曲线的扩展[J].计算机辅助设计与图形学学报,2003,15(5):576-578. 被引量:119
  • 3Barsky B A, Greengerg D P. Determining a set of B-spline control vertices to generate an interpolating surface[J]. Computer Graphics and Image Processing, 1980, 14(3): 203~226.
  • 4Pieg L. Modifying of the shape of rational B-spline [J]. CAD, 1989, 21(8): 509~518.
  • 5Hu Shimin, Zhou Denwen, Sun Jiaguang. Shape modification of NURBS curves via constrained optimization[A]. In: Proceedings the CAD/Graphics'99 [C]. Shanghai: Wenhui Publishers, 1999. 958 ~ 962.
  • 6Pieg L, Tiller W. The NURBS book [M]. Springer, New York, 1995. 1~106.
  • 7Farin G. NURBS curves and surfaces [M]. Peter A K, Wellesley, MA, 1995. 64~123.
  • 8Forrest A R. The twisted cubic curve: A computer aided geometric design approach [J]. CAD, 1980, 12(4): 165~172.
  • 9Han X. Quadratic trigonometric polynomial curves with a shape parameter [J]. CAGD, 2002, 19(7): 503~512.

二级参考文献7

  • 1张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:236
  • 2Piegl, L. Modififying of the shapeof rational B-spline. Part 1: Curves. Computer Aided Design, 1989,21(8):509~518.
  • 3Flowler, B., Bartels, R. Constrained-Based curve manipulation. IEEE ComputerGraphics and Application, 1993,13(5):43~49.
  • 4Au, C.K., Yuen, M.M.F. Unified approach to NURBS curve shape modification.ComputerAided Design, 1995,27(2):85~93.
  • 5Sánchez, R.J. A simple technique for NURBS shape modification. IEEE ComputerGraphics and Applications, 1997,17(1):52~59.
  • 6Hu Shi-min, Zhou Den-wen, Sun Jia-guang. Shape modification of NURBS curves viaconstrained optimization. In: Proceedings of the CAD/Graphics'99. Shanghai: WenHuiPublishers, 1999. 958~962.
  • 7Hu Shi-min, Li You-fu, Ju-tao, et al. Modifying the shape of NURBS surfaces withgeometric constraints. Computer Aided Design, 2001,33(12):903~912.

共引文献126

同被引文献15

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部