期刊文献+

球极投影变换核估计及其逐点收敛速度 被引量:2

KERNEL STEREOGRAPHIC PROJECTION DENSITY ESTIMATOR AND ITS POINTWISE CONVERGENCE RATE
下载PDF
导出
摘要 本文提出了利用一维核函数构造多维密度函数一个新估计的方法.首先利用球极投影变换将具有密度f(x),X∈Rd的样本变换为具有密度g(y),y∈Ωd+1={y:y∈Rd+1,‖y‖=1)的样本.其次,建立f与g的关系.最后,利用球面数据密度核估计构造f的一个新估计f^n.在核K及密度f(x)满足一定条件(见§1定理1.1)下,获得了f^n到,的逐点强收敛速度. In this paper, a new kernel estimator of multivariate density is proposed by using a univariate kernel function. The main idea is that firstly transform the sample from the multivariate density f(x), x∈Rd to a sample from the density g(y), y∈Ωd+1 ={y: y∈Rd+1, ‖y‖= 1}, which is dependent on f(·) by stereographic projection transformation and secondly construct kernel density estimator f^n(x) by using the results of kernel density estimator with spherical data. The authors also get some results on convergence rate of f^n(x) to f(x) under the assumption of kernel K and density function f(x) (see Theorem 1.1 in Section 1).
作者 赵颖 杨振海
出处 《数学年刊(A辑)》 CSCD 北大核心 2005年第1期19-30,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10371005)资助的项目.
关键词 核密度估计 球极投影变换 球面数据 收敛速度 Kernel density estimator, Stereographic projection transformation, Spherical data, Convergence rate
  • 相关文献

参考文献1

二级参考文献2

  • 1Bat Z D,J Multi Anal,1988年,27卷,24页
  • 2Pukkila L,Technical Report 86 09 Center Multivariate Analysis University Pittsburgh,1986年

共引文献2

同被引文献29

  • 1苏岩,杨振海,李双杰.增长型经济变量的趋势时间序列预测模型[J].数学的实践与认识,2007,37(3):4-8. 被引量:1
  • 2杨振海,苏岩.单位球均匀分布的拟合优度检验[J].北京工业大学学报,2007,33(7):771-777. 被引量:2
  • 3PAuLA G A,MEDEIROS M,VILCA-LABRA F E.Iulluence diagnostics for linear models Witll fim-order autoregressive elliptical errers[J].Statistics and Probability Lettem,2009(79):339-346.
  • 4SUN Z H,Wang Q H,Dai P J.Model checking for partially linear models with missing rosponses at random[J].Journal of Multivariate Analysis,2009(100):636-651.
  • 5HUBER-CAROL C,BALAKRISHNAN N,NIKULIN M S,et al.Goodness-of-fit tests and.model validity[M].Boston·Basel·Berlin:Birkhauser,2002.
  • 6FANG K T,KOTZ S,NG K W.Symmetric multivariate and related distributions[M].London·New York:Chapman and Hall,1990.
  • 7YANG Z H,KOTZ S.Center-similar distributions with applications in multivariate analysis[J].Statistics&Probability Lettem,2003(64):335-345.
  • 8JAMMALAMADAKA S R,GORIA M N.A test of goodness-of-fit based on Gini'S index of spacings[J].Statistics & Probability Letters,2004(68):177-187.
  • 9RAYNER J C W,BEST D J.Smooth tests of goodness of fit[M].New York,Oxford:Oxford University Press,1989.
  • 10BOULERICE B,DUCHARME G R.Smooth tests of goodness-of-fit for directional and axial data[J].Journal of Multivariate Analysis,1997(60):154-175.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部