期刊文献+

逆算符方法求解非线性动力学方程及其一些应用实例 被引量:30

INVERSE OPERATOR METHOD FOR SOLUTIONS OF NONLINEAR DYNAMICAL EQUATIONS AND SOME TYPICAL APPLICATIONS
原文传递
导出
摘要 首先简介逆算符方法及如何实现对它的数学机械化;然后用逆算符方法研究了三个典型的非线性方程:Lorentz方程,广义Duffing方程和双耦合广义Duffing方程。用四阶龙格-库塔方法进行比较,说明逆算符方法比龙格-库塔方法具有更高的精度和更快的收敛性。本文把逆算符方法应用于混沌行为的研究,并将此法在微机上实现了数学机械化。该法有很大的普适性,特别适用于对复杂问题的定量计算,大有应用和发展前途。 In this paper, the inverse operator method (IOM) is described briefly. We have realized the IOM for the solutions of nonlinear dynamical equations by the mathematics-mechanization (MM) with computers. They can then offer a new and powerful method applicable to many areas of physics. We have applied them successfully to study the chaotic behaviors of some nonlinear dynamical equations. As typical examples, the well-known Lorentz equation, generalized Duffing equation and two coulped generalized Duffing equations are investigated by the use of the IOM and the MM. The results are in good agreement with those given by Runge-Kutta method. So the IOM realized by the MM is of potential application valuable in nonlinear physics and many other fields.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 1993年第9期1375-1384,共10页 Acta Physica Sinica
关键词 非线性方程 动力学方程 逆算符 Chaos theory Dynamics
  • 相关文献

参考文献3

  • 1方锦清,1992年
  • 2方锦清,1992年
  • 3陈之江,REDUCE语言简明教程,1990年

同被引文献101

引证文献30

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部