期刊文献+

A unified approximate reasoning theory suitable for both propositional calculus system L and predicate calculus system K 被引量:6

A unified approximate reasoning theory suitable for both propositional calculus system L and predicate calculus system K
原文传递
导出
摘要 The concepts of metric R0-algebra and Hilbert cube of type RO are introduced. A unified approximate reasoning theory in propositional caculus system ? and predicate calculus system (?) is established semantically as well as syntactically, and a unified complete theorem is obtained. The concepts of metric R0-algebra and Hilbert cube of type RO are introduced. A unified approximate reasoning theory in propositional caculus system ? and predicate calculus system (?) is established semantically as well as syntactically, and a unified complete theorem is obtained.
出处 《Science in China(Series F)》 2005年第1期1-14,共14页 中国科学(F辑英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.19331010).
关键词 metric R0-algebra Hilbert cube of type R0 metric Lindenbaum algebra of type R0 approximate reasoning complete theorem. metric R0-algebra, Hilbert cube of type R0, metric Lindenbaum algebra of type R0, approximate reasoning, complete theorem.
  • 相关文献

参考文献26

  • 1[1]Gorz, G., Holldobler, S., Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence 1137, New York: Springer-Verlag, 1996.
  • 2[2]Shi, C. Y., Huang, C. N., Wang, J. Q., Principle of Artificial Intelligence, Beijing: TsingHua University Press,1993.
  • 3[3]Lloyd, J. W., Foundations of Logic Programming, New York: Springer-Verlag, 1987.
  • 4[4]Schumann, J. M., Automated Theorem Proving in Software Engineering, Berlin: Springer-Verlag, 2001.
  • 5[5]Liu, X. H., Automated Deduction Based on Resolution Principle, Beijing: Science in China Press, 1994.
  • 6[6]Qiu, Y. H., Zhang, W. Q., Introduction to Automated Deduction, Chengdu: Electronic Science and Technology University Press, 1992.
  • 7[7]Chang, C. L., Lee, R. C., Symbolic Logic and Mechanical Theorem Proving, New York: Academic Press, 1987.
  • 8[8]Antoniou, G., Nonmonotonic Reasoning, Cambridge: The MIT Press, 1977.
  • 9[9]Lu, R. Q., Ying, M. S., A model of reasoning about knowledge, Science in China, Ser. E, 1998, 41(5): 527-534.
  • 10[10]Williamson, J., Gabbay, D., Special issue on combining probability and logic, J. Applied Logic, 2003, 1(1-2):135-138.

同被引文献23

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部