期刊文献+

基于IRT模型的BP神经网络降维法参数估计及其应用 被引量:9

The Reduced Dimension Method of Parameter-Estimation Using BP Neural Network and Its Application Based on Item Response Theory
下载PDF
导出
摘要 该文对应用BP神经网络和降维法相结合在 0 - 1记分模式下估计项目参数和考生能力的方法作了概述 。 The item parameters and the person ability parameter in Logistic Models based on IRT are estimated with Back-Propagation Neural Network. The dimension of scoring matrices X is reduced by using scoring rate, passing rate, coefficient of correlation, guess rate when estimating corresponding ability parameter and item parameters. The results drawn from Monte Carlo study show that the item parameters estimation is more precise than the current prevailing softwares.The focus of this paper is to discuss how to apply this estimation method to practice.
出处 《江西师范大学学报(自然科学版)》 CAS 2004年第6期485-488,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金 (6 0 2 6 30 0 5 ) 全国教育科学规划重点课题 (DBB0 1 0 5 0 1 ) 江西省自然科学基金 (0 4 1 1 0 2 1 )资助项目
关键词 降维法 考生 IRT 实际 能力 记分 模式 参数估计 对应 Item Response Theory item parameter estimation Back-Propagation neural network reduction of dimension application
  • 相关文献

参考文献5

二级参考文献17

  • 1余嘉元.运用联结主义模型研究知觉边界效应问题[J].心理学报,2001,33(2):123-126. 被引量:6
  • 2Frank B Baker. Item Response Theory:parameter estimate technique[M].Marcel Dekker, Inc, 1992:57~62,104~107,178~179
  • 3Susan E Embretson,Steven P.Reise Item Response Theory for psychologists,Lawrence Erlbaum Associates[M].Publishers,2000:5
  • 4胡守仁 余少波 戴葵.神经网络导论[M].北京:国防科技大学出版社,1998..
  • 5Hambleton R K. Item Response Theory: Principles and Applications. Boston: Kluwer-Nijhoff Pub,1985.58~63
  • 6Baker F B. Item Response Theory: Parameter Estimation Techniques. New York: M.Dekker,1992.66~71
  • 7McLead P. Introduction to Connectionist Modeling of Cognitive Processes. New York: Oxford University Press, 1998.256~261
  • 8Mahwah N J,Erlbaum L L. Localist Connectionist Approaches to Human Cognition. New York: Oxford University Press,1998,188~192
  • 9Anderson, J. A. An Introduction to Neural Networks. Cambridge:The MIT Press, 1995,136~143.
  • 10Haykin S S. Neural Networks: A Comprehensive Foundation. Upper Saddle River, N. N., Press Hall, 1999. 178~181

共引文献25

同被引文献74

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部