期刊文献+

低雷诺数的孔板计量数值模拟及其应用 被引量:20

Numerical Simulation and Application of Flow Through a Pipe Orifice at Low Reynolds Numbers
下载PDF
导出
摘要 以计算流体力学为工具,详细分析计算了流体流过孔板的层流流场分布以及压力降。计算了β=d D=0.5时的流出系数,并根据计算结果拟合出流出系数与Re的关系式。在以往孔板的层流流场模拟中,雷诺数不超过150,而作者所编的计算程序能够计算雷诺数从0~500之间所有孔板流场,从而为实际应用奠定了良好的基础。 Based on computational fluid dynamics, the distribution of laminar flow-field and pressure difference are obtained by numerical simulation on flow through orifice plate in detail. According to calculated result, discharge coefficients as a function of Reynolds numbers at d/D = 0.5 is obtained. In the past, the Reynolds numbers was never over 150 about simulation of orifice plate laminar flow-field. In this paper, the simulation program can calculate orifice plate flow-field with Re from 0 to 500. So the result is a good basis for actual application.
出处 《计量学报》 EI CSCD 北大核心 2005年第1期57-59,共3页 Acta Metrologica Sinica
关键词 计量学 孔板 流出系数 层流 数值模拟 Metrology Orifice plate Discharge coefficients Laminar Numerical simulation
  • 相关文献

参考文献5

  • 1陶文铨.数值传热学[M].西安:西安交通大学出版社,1995.1.
  • 2帕坦卡SV著 张政译.传热与流动的数值计算[M].北京:科学出版社,1984..
  • 3王伯年,余国和,陈中.割线法及其在确定差压式流量计参数中的应用[J].计量学报,1996,17(3):211-214. 被引量:3
  • 4Mills R D. Numerical solution of viscous flow through a pipe orifice at low Reynolds numbers [ J ]. Journal of Mechanical Engineering Science, 1968, 2: 133 ~ 140.
  • 5Meier H F, Alves J J N, Mori M. Comparison between staggered and collocated grids in the finite-volume method performance for single and multi-phase flows[J]. Computers and Chemical Engineering, 1999, 23: 247~ 262.

二级参考文献3

  • 1匿名著者,1993年
  • 2薛密,数值数学和计算,1991年
  • 3冯果忱,中国大百科全书.数学卷,1988年

共引文献84

同被引文献115

引证文献20

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部