期刊文献+

中国邮递员问题的动态规划算法研究 被引量:11

Research on Chinese Postman Problem Decision Process Algorithm
下载PDF
导出
摘要 在动态规划的决策过程思想基础上 ,针对无向中国邮递员问题 ,提出了一个新的搜索算法CPDPA(Chinesepostmandecisionprocessalgorithm) ,首次实现了中国邮递员问题的动态规划求解 针对中国邮递员问题不能直接应用于决策思想 ,提出了弧点转换算法CEPA (convertedgetopointalgo rithm) ,建立了该问题适用于决策的模型 进而针对这一模型 ,提出了多阶段决策过程模型转换算法MDPMCA (multistepdecisionprocessmodelconvertalgorithm) ,转换所得模型符合多阶段决策过程需求 ,可用CPDPA算法求解中国邮递员问题 对每一算法都给出了其网络应用实例 对算法的正确性和理论性做出了证明 。 Chinese postmen problem was presented by professor GUAN Mei-Gu in 1960s, and solved by J.Edmonds and E.L.Johnson in 1970s. Being a mature theory system, dynamic programming has two essences: the thought of ruling separately and the solution of redundancy. It has been used in many domains. In this paper, a system of algorithms is proposed for solving Chinese postmen problem. In the system, a new algorithm CPDPA(Chinese postman decision process algorithm)is presented at the first time, which makes it possible to solve Chinese postman problem with decision process thought. First of all, the system gives algorithm CEPA(convert edge to point algorithm)for making the model of Chinese postman problem apply in decision-making, then, it gives MDPMCA(multistep decision process model convert algorithm)to make this model according to the demand of the multistep decision process. In this way, CPDPA can be used to solve Chinese postman problem. Additionally, the accuracy of this system is verified by the experimental results, the theories of these algorithms are proved, and principle of optimality is broadened in Chinese postman problem.
作者 费蓉 崔杜武
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第2期294-299,共6页 Journal of Computer Research and Development
关键词 动态规划 最优路径 CPDPA算法 最优性 decision process best path CPDPA algorithm best
  • 相关文献

参考文献9

  • 1《现代数学手册》编纂委员会.现代数学手册-计算机数学卷[M].武汉:华中科技大学出版社,2001.409-459.
  • 2费蓉,崔杜武.不定期决策过程优化模型的算法研究[J].微电子学与计算机,2004,21(6):10-12. 被引量:1
  • 3《现代应用数学手册》编委会.现代应用数学手册-运筹学与最优化理论卷[M].北京:清华大学出版社,1997.254-266.
  • 4王士同.多阶段模糊决策问题的模糊启发式搜索算法FDA[J].计算机研究与发展,1998,35(7):652-656. 被引量:4
  • 5R.E. Bellman, S. E. Dreyfus. Applied Dynamic Programming. Princeton, New Jersey: Princeton University Press, 1962.
  • 6J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. London: The Macmillan Press LTD, 1976.
  • 7R.E. Bellman. Dynamic Programming. Princeton, New Jersey:Princeton University Press, 1957.
  • 8GoldbergDE. Genetic algorithms in optimization and machine learning. New York: Addison-Wesley, 1989.
  • 9C.H. Papadimition, K. Steiglitz. Combinatorial Optimization,Algorithms and Complexity. New Jersey: Printice-Hall, 1982.

二级参考文献9

  • 1何奇.基于Pipeline的一类动态规划并行算法[J].计算机学报,1994,17(7):527-535. 被引量:1
  • 2王士同,Fuzzy Sets Syst,1996年,83卷,11期,33页
  • 3王士同,Fuzzy Sets Syst,1993年,80卷,11期,21页
  • 4王士同,模糊数学在人工智能中的应用,1991年
  • 5王士同,Principles of AI,1980年
  • 6AhujaRK, MagnantiTL, OrlinJB. NetworkFlows:Theory, Algorithms and Applications. Englewood Cliffs, NJ: PrenticeHall, 1993.
  • 7Shenoy P P, G Shafer. Propagating Belidf Functions Using Local computation. IEEE Expert, 1986,1(3): 43~52.
  • 8马振华等.现代应用数学手册--运筹学与最优化理论卷.清华大学出版社,2001.12.
  • 9拉森等.动态规划原理.清华大学出版社,1984.1.

共引文献3

同被引文献69

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部