期刊文献+

MRI和DTI评价犬急性脊髓损伤后的形态及功能改变 被引量:15

MR imaging and MR diffusion tensor imaging in evaluation of morphological and functional changes of acute injured canine spinal cord
下载PDF
导出
摘要 目的 观察犬急性脊髓损伤后的形态和功能改变。方法 制作犬T13脊髓左半横断损伤模型。分别于损伤前、损伤后 1周行MRI和DTI (SSFSE序列扫描 ,b =5 0 0s/mm2 ,扩散敏感梯度方向 =13 )检查 ,测量手术侧和非手术侧的ADC值及FA值 ,并对结果进行统计学分析。结果 正常犬脊髓左、右侧的ADC值为 (1.0 0± 0 .15 )× 10 -3 mm2 /s和 (1.0 1± 0 .17)× 10 -3 mm2 /s ,FA值为 0 .5 9± 0 .11和 0 .60± 0 .0 8,左右两侧无明显差异。脊髓损伤后手术侧ADC值升高为 (1.65± 0 .45 )× 10 -3 mm2 /s (t =4.3 66,P =0 .0 0 1)、FA值降低为 0 .3 0± 0 .17(t =-3 .749,P =0 .0 0 3 ) ;非手术侧无明显变化。结论 DTI能对实验性脊髓损伤后的观察提供有价值的信息。 Objective To observe the morphological and functional changes of acute injured canine spinal cord with MRI and MR diffusion tensor imaging (DTI). Methods Prior to and 1 week after injury, 12 adult canines suffered from left spinal cord hemisection at the level of T13 were examined by MRI and DTI. Axial T1 and T2 weighted images were obtained before the DTI sequence. The protocol of DTI was as following: SSFSE, TR/TE=12681/69.1 ms; ETL=84; slice thickness=5 mm with no gap; FOV=16 cm;NEX=4; matrix=128×128, b=500 s/mm 2, directions of diffusion sensitive gradients=13. The apparent diffusion coefficients (ADCs) and fractional anisotropy (FA) value of the spinal cord were calculated. Results The ADCs of normal canine spinal cord at T13 level were (1.00±0.15)×10 -3 mm 2/s and (1.01±0.17)×10 -3 mm 2/s for the left and right sides, and the FA values of the corresponding area were 0.59±0.11 and 0.60±0.08, respectively. There were not statistically significant differences between the ADCs and FA values obtained from the left and right side ( t=0.712, P =0.493; t=0.233, P =0.821, respectively). After injury, the ADC of the injured spinal cord increased to (1.65±0.45)×10 -3 mm 2/s ( t=4.366, P =0.001) and FA decreased to 0.30±0.17 ( t=-3.749, P =0.003). The ADC and FA value of the contralateral spinal cord varied similarly, but with no statistically significant difference [ADC=(1.22±0.06)×10 -3 mm 2/s, t=2.455, P =0.127; FA=0.48±0.15, t=-2.373, P =0.122]. Conclusion DTI can provide useful information of spinal cord damage in experimental spinal cord injury.
出处 《中国医学影像技术》 CSCD 2004年第12期1821-1824,共4页 Chinese Journal of Medical Imaging Technology
关键词 脊髓 损伤 扩散张量成像 磁共振成像 Spinal cord Injury Diffusion tensor imaging Magnetic resonance imaging
  • 相关文献

参考文献16

  • 1Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications[J]. JMRI, 2001, 13(4): 534-546.
  • 2Ulug AM, Moore DF, Bojko AS, et al. Clinical use of diffusiontensor imaging for diseases causing neuronal and axonal damage [J]. AJNR, 1999, 20(6): 1044-1048.
  • 3Wheel-Kingshott CA, Hickman SJ, Parker GJ, et al. Investigating cervical spinal cord structure using axial diffusion tensor imaging[J]. Neuroimag, 2002, 16(1): 93-102.
  • 4Mulkem RV, Spencer RG. Diffusion imaging with paried CPMG sequences[J]. MRI, 1988, 6(6): 623-631.
  • 5Nadal Desbarats L, Herlidous S, deMarco G, et al. Differential MRI diagnosis between brain abscesses and necrotic or cystic brain tumors using the apparent diffusion coefficient and normalized diffusion-weighted images[J]. MRI, 2003,21(6):645-650.
  • 6Huisman TA. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma[J]. Eur Radiol, 2003,13(10): 2283-2297.
  • 7Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging[J]. Magn Reson Q, 1991,7(1): 1-30.
  • 8Hendler T, Pianka P, Sigal M, et al. Delinaeating gray and white matter involvement in brain lesions: three-dimensional alignment of functional magnetic resonance and diffusion tensor imaging[J] .J Neurosurg, 2003, 99(6): 1018-1027.
  • 9Sinha U, Yao L. In vivo diffusion tensor imaging of human calf muscle[J]. JMRI, 2002, 15(1): 87-95.
  • 10Cercignani M, Horsfield MA, Agosta F, et al. Sensitivity-encoded diffusion tensor MR imaging of the cervical cord[J]. AJNR,2003, 24(6): 1254-1256.

二级参考文献27

  • 1[1]Melhem ER, Mori S, Mukundan G, et al. Diffusion tensor MR imaging of the brain and white matter tractography[J]. AJR, 2002, 178(1): 3-16.
  • 2[2]Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI[J]. J Magn Reson B, 1996, 111(3): 209-219.
  • 3[3]Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI[J]. Magn Reson Med,2002,48(1):128-136.
  • 4[4]Yamada K, Kizu O, Mori S, et al. Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: initial experience[J]. Radiology, 2003, 227(1):295-301.
  • 5[5]Mori S, van Zijl PC. A motion correction scheme by twin-echo navigation for diffusion-weighted magnetic resonance imaging with multiple RF echo acquisition[J]. Magn Reson Med,1998, 40(4):511-516.
  • 6[6]Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging[J]. Magn Reson Med, 1999, 42(3): 515-525.
  • 7[7]Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI[J]. J Magn Reson Imaging, 2001, 13(5):769-780.
  • 8[8]Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging[J]. Magn Reson Med, 1998, 39(5): 801-812.
  • 9[9]Bastin ME. Correction of eddy current-induced artifacts in diffusion tensor imaging using iterative cross-correlation[J]. Magn Reson Imaging, 1999, 17(7):1011-1024.
  • 10[10]Poupon C, Mangin J, Clark CA, et al. Towards inference of human brain connectivity from MR diffusion tensor data[J]. Med Image Anal, 2001, 5(1):1-15.

共引文献33

同被引文献224

引证文献15

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部