期刊文献+

低度图的点覆盖和独立集问题下界改进 被引量:11

Improvement on Vertex Cover and Independent Set Problem for Low Degree Graphs
下载PDF
导出
摘要 给出了一种提高低度图点覆盖和独立集问题下界的精确算法.通过分析如何有效地减少图中的顶点来打破原问题的NP Hard结构建立起搜索递推关系;得出3度图的最小点覆盖问题的解决时间为 O(1 1033n),参数化的3度图点覆盖问题的解决时间为O(kn+1 2174k);将此算法应用到 3 度图的最大独立集问题上,可以得到运行时间为O(1 1033n)的解.以上3结果均打破原有最佳下界. An exact algorithm to improve the upper bound of vertex cover and independent set problem for low-degree graphs is presented. The algorithm constructs recurrence relations by concentrating on how many vertices be reduced then the NP-hard structure of the problem is broken. With this idea, running time O(l.1033n) for minimum vertex cover problem on degree-3 graphs is proved. For parameterized vertex cover problem on degree-3 graphs, it also can be solved with running time O(kn+1.2174k). Using the algorithm to the maximum independent set problem on degree-3 graphs, the authors can get the running time O(l.1033n). All of the above results improve the previous best results.
出处 《计算机学报》 EI CSCD 北大核心 2005年第2期153-160,共8页 Chinese Journal of Computers
关键词 点覆盖 独立集 精确算法 参数计算 Algorithms Parameter estimation
  • 相关文献

参考文献16

  • 1Garey M., Johnson D. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.
  • 2Downey R.G., Fellows M.R., Parameterized Complexity. New York: Springer, 1999.
  • 3Tarjan R.E., Trojanowski A.E. Finding a maximum independent set. SIAM Journal on Computing, 1986, 7(4): 537~546.
  • 4Jian T. An O(20.304n) algorithm for solving the maximum independent set problem. IEEE Transactions on Computers, 1986, 35(7): 847~851.
  • 5Shindo M., Tomita E. A simple algorithm for finding a maximum clique and its worst-case time complexity. System and Computer in Japan, 1990, 21(1): 1~13.
  • 6Robson J.M. Algorithms for maximum independent set. Journal of Algorithms, 1986, 7 (4): 425~440.
  • 7Beigel R. Finding maximum independent sets in sparse and general graphs. In: Proceedings of the 10th CM-SIAM Symposium on Discrete Algorithms (SODA'99), 1999, 856~857.
  • 8Kanj I.A. Vertex cover: Exact and approximate algorithms and applications[Ph.D. dissertation]. Department Computer Science, Texas A&M University, College Station, Texas, 2001.
  • 9Buss J.F., Goldsmith J. Nondeterminism within P. SIAM Journal on Computing, 1993, 22 (4): 560~572.
  • 10Downey R.G., Fellows M.R. Parameterized computational feasibility. In: Clote P., Remmel J. ed. Feaible mathematics II, Boston, Birkhauser, 1995, 219~244.

同被引文献107

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部