期刊文献+

高加载率SHPB试验分析原理的再研究 被引量:8

RE-EXAMINATION OF SPLIT HOPKINSON PRESSURE BAR ANALYSES AT HIGH LOADING RATE
下载PDF
导出
摘要 从实验、理论与数值模拟的结合上,对于高加载率的SHPB试验原理提出一种新理念。一方面采用一维有限差分方法对SHPB试验原理进行全过程数值模拟,考察SHPB试验经典分析方程对于高加载率情况的适用性;另一方面把SHPB试验经典分析确定的试件材料本构关系嵌入SHPB试验全过程数值模拟,考察数值模拟再现高加载率SHPB试验测得的反射波形及透射波形的可能性。通过对高加载率SHPB试验的数值实例,指明了如同Wu等揭示的实验规律:试件两端的应力平衡依赖于试件厚度及加载率。 An analysis of the split Hopkinson pressure bar (SHPB) test at high loading rate is presented concerning the experimental data, the numerical simulation and the description of constitutive laws of specimen. First, the validity of the classical SHPB analyses at high loading rate is re-examined using one-dimensional simulation of SHPB test. On the other hand, the numerical simulation of the SHPB test at high loading rate using the constitutive law of the specimen obtained by classical SHPB analyses is performed to reproduce the experimental reflected pulse and transmitted pulse. Some experimental facts of SHPB tests at high loading rate revealed by Wu et al are also indicated in simulated examples, i.e., that the stress equilibrium between the ends of compression SHPB specimens is dependent on specimen length and loading rate.
出处 《工程力学》 EI CSCD 北大核心 2005年第1期82-87,共6页 Engineering Mechanics
基金 国家自然科学基金资助项目(10272058) 中国工程物理研究院专项基金资助项目
关键词 高加载率 SHPB试验 数值模拟 经典分析 本构方程 Computer simulation Loads (forces) One dimensional Strain rate Stress analysis
  • 相关文献

参考文献10

  • 1Lindholm V S. Some experiments with the split Hopkinson pressure bar [J]. J. Mech. Phys. Solids, 1964, 12: 317-335.
  • 2Lindholm V S and Yeakley L M. High strain-rate testing: tension and compression [J]. Experimental Mechanics, 1968, 8: 1-9.
  • 3Jahsman W E. Reexamination of the kolsky technique for measureing dynamic material behavior [J]. J. Appl. Mech., 1971, 38: 77-82.
  • 4Wu X J and Gorham D A. Stress equilibrium in the split Hopkinson pressure bar test [J]. J. Phys IV France, Colloque C3, Supplement au Journal de Physique Ⅲ d`aout 1997, 7: C3-91-C3-96.
  • 5Zhao H and Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains [J]. Int. J. Solids. Structures, 1996, 33(23): 3363-3375.
  • 6Wilkins M L. Calculation of elastic-plastic flow, in "Methods in computational physics V. 3 Fundamental Methods in hydrodynamics [M]. Academic Press, New York and London, 1964.
  • 7Johnson G R and Cook W H. A constitutive model and data for metals subjected to large strains, high strain-rates and high temperatures [C]. in "Proc. Seventh Int. Nat. Symposium on Ballistics, Am. Def. Prep. Org (ADPA), Netherlands, April, 1983.
  • 8Little G H and Heywood M D. Axial stress waves in an elastic-perfectly-plastic bar [J]. Int. J. Mech. Sci., 2001, 43: 2791-2813.
  • 9Meng H and Li Q M. Correlation between the accuracy of a SHPB test and the stresss uniformity based on numerical experiments [J]. Int. J. Impact Eng., 2003, 28: 537-555.
  • 10Meng H and Li Q M. An SHPB setup with reduced time-shift and pressure bar length [J]. Int. J. Impact Eng., 2003, 28: 677-696.

同被引文献100

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部