期刊文献+

基于改进BP神经网络的预测模型及其应用 被引量:87

Predictive Model Based on Improved BP Neural Networks and It's Application
下载PDF
导出
摘要 对BP神经网络的结构及其训练算法进行了研究,并针对传统BP算法的缺陷,提出了一种采用L-M算法的改进 BP神经网络。在此基础上建立了基于改进BP神经网络的非线性系统预测模型,并通过具体的仿真及实践结果验证了改进BP 神经网络的有效性。 The structure of BP neural networks and its training algorithm are studied. Aiming at the shortage of the conventional BP algorithm, the BP neural networks improved by L-M algorithm is put forward . On the basis of these, the predictive model of the nonlinear system is set up based on improved BP neural networks .By means of the simulation and practice, the effectiveness of the improved BP neural networks has been further testified.
出处 《计算机测量与控制》 CSCD 2005年第1期39-42,共4页 Computer Measurement &Control
关键词 BP神经网络 预测模型 BP算法 L-M算法 非线性系统 neural networks BP algorithm L-M algorithm nonlinear system forecast
  • 相关文献

参考文献7

二级参考文献24

  • 1卢学强,干时环境监测,1995年,4期
  • 2王东生,混沌、分形及其应用,1995年
  • 3李孝安,神经网络与神经计算机导论,1994年
  • 4邓聚龙,灰色预测与决策,1986年
  • 5Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362.
  • 6Neural Network Toolbox User's Guide .The Mathworks,inc. 1999.
  • 7Fahlman S E. Faster-learning variations on back-propagation: an e mpirical study[A].Touretzky D,Hinton G,Sejnowski T. Proceedings of the 1988 C onnectionist Models Summer School[C].Carnegic Mellon University,1988,38~51.
  • 8Jacobs R A. Increased rates of convergence through learning rate adaptation[J]. Neural Networks,1988,1:295~307.
  • 9Shar S, Palmieri F. MEKA-a fast, local algorithm for training feedforwa rd neural networks[A]. Proceedings of the International Joint Conference on Ne ural Networks[C]. IEEE Press, New York, 1990.41~46.
  • 10Watrous R L. Learning algorithms for connectionist network: appli ed gradie nt methods of nonlinear optimization[A]. Proceedings of IEEE International Con ference on Neural Networks[c]. IEEE Press, New York, 1987.619~627.

共引文献375

同被引文献648

引证文献87

二级引证文献346

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部