摘要
Four low-alloy hull steels with different alloy elements were selected. Theirsusceptibility to pitting corrosion was compared by means of electrochemical polarization test. Theinclusions in the steels and their pitting corrosion characteristics were studied by an electronprobe micro-analyzer (EPMA). The results indicate that some inclusions are the main sources ofpitting corrosion. The susceptibility of nickel-chromium steel to pit initiation is less than thatof manganese steel. Under the same conditions, nickel-chromium steel is easier to passivate thanmanganese steel, and the passive films on nickel-chromium steel surface are more stable than that onmanganese steel. In low-alloy steels, the higher the contents of nickel and chromium, the lower thecritical passive pH value. In the same kind of steel, multi-phase inclusions containing sulfide areeasier to initiate pitting corrosion than other inclusions.
Four low-alloy hull steels with different alloy elements were selected. Theirsusceptibility to pitting corrosion was compared by means of electrochemical polarization test. Theinclusions in the steels and their pitting corrosion characteristics were studied by an electronprobe micro-analyzer (EPMA). The results indicate that some inclusions are the main sources ofpitting corrosion. The susceptibility of nickel-chromium steel to pit initiation is less than thatof manganese steel. Under the same conditions, nickel-chromium steel is easier to passivate thanmanganese steel, and the passive films on nickel-chromium steel surface are more stable than that onmanganese steel. In low-alloy steels, the higher the contents of nickel and chromium, the lower thecritical passive pH value. In the same kind of steel, multi-phase inclusions containing sulfide areeasier to initiate pitting corrosion than other inclusions.