摘要
Let M α be the fractional maximal operators (0<α≤1) and (u,v) a pair of weight functions, u∈D ∞, σ=v~~~~^(-1/(p-1))∈A ∞. The boundedness of M α on some homogenous groups (G, ‖·‖, dx) and the covering Lemma of Calderon-Zygmund type are studied. Not only an adequate covering Lemma of Calderon-Zygmund type is shown, but also the boundedness of fractional maximal operators M α(0<α≤1) on some of homogeneous groups with respect to a given pair of weight functions (u,v) as above is proved. Moreover, a sufficient and necessary condition for M α∈B(u^qdx, v~~pdx), 0<α<1, 1<p<1α, and 1q=1p-α is also given. Finally, an application of the results is also obtained.
Let M α be the fractional maximal operators (0<α≤1) and (u,v) a pair of weight functions, u∈D ∞, σ=v~~~~^(-1/(p-1))∈A ∞. The boundedness of M α on some homogenous groups (G, ‖·‖, dx) and the covering Lemma of Calderon-Zygmund type are studied. Not only an adequate covering Lemma of Calderon-Zygmund type is shown, but also the boundedness of fractional maximal operators M α(0<α≤1) on some of homogeneous groups with respect to a given pair of weight functions (u,v) as above is proved. Moreover, a sufficient and necessary condition for M α∈B(u^qdx, v~~pdx), 0<α<1, 1<p<1α, and 1q=1p-α is also given. Finally, an application of the results is also obtained.