期刊文献+

加权支持向量回归算法 被引量:5

Weighting Support Vector Regression Algorithm
下载PDF
导出
摘要 1引言 Vapnik等人根据统计学习理论提出的支持向量机学习方法[1],近年来受到了国际学术界的广泛重视.支持向量机的最大特点是根据Vapnik结构风险最小化原则,尽量提高学习机的泛化能力,即由有限的训练集样本得到的小的误差能够保证对独立的测试集仍然保持小的误差. Support vector regression machines based on structural risk minimization have a good generalization performance. However, its effect is not good if there exists heterogeneity of variance in the regression models. In order to solve the problem, a kind of weighting support vector regression is proposed in this paper. The results of simulation experiments show the feasibility and effectiveness of the method.
出处 《计算机科学》 CSCD 北大核心 2003年第11期38-39,共2页 Computer Science
基金 广东自然科学基金(021349)
关键词 加权支持向量回归算法 人工智能 优化形式 模式识别 Support vector machine, Regression, Kernel function, Heterogeneity of variance
  • 相关文献

参考文献5

  • 1Vapnik V N. Statistical Learning Theory [M] New York, Wiley,1998
  • 2Smola A J,Scholkopf B. A tutorial on support vector regression [R]: [NeuroCOLT TR NC-TR-98-030]. Royal Holloway College University of London, UK, 1998
  • 3Fernandez R. Predicting time series with a local support vector regression machine [C]. IN ACAI 99,1999
  • 4Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [R]. Knowledge Discovery and Data Mining, 1998,2 (2)
  • 5Cortes C, Vapnic V. Support-vector networks [J]. MachineLearning, 1995,20(3) :273~297

同被引文献17

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部