期刊文献+

借助单参数Lie群求首次积分的方法及其在陀螺系统的应用 被引量:2

原文传递
导出
摘要 讨论利用单参数 Lie 群求自治常微分方程组首次积分的方法,并对经典陀螺系统找到其接受的一种非平凡单参数 Lie 群,利用其所揭示的首次积分的特点就可用统一的思想容易地求出 Euler,Lagrange 及 Kovalevskaya 情形下的第4个首次积分,指出并纠正了前人关于 Kovalevskaya 陀螺在 xG,yG 均不等于零的一般条件下第4个首次积分的错误.
出处 《中国科学(A辑)》 CSCD 北大核心 2005年第1期15-22,共8页 Science in China(Series A)
  • 相关文献

参考文献11

  • 1梅凤翔 刘端.高等分析力学[M].北京:北京理工大学出版社,1991..
  • 2Arnold V I. Mathematical Methods of Classical Mechanics. 2nd ed. New York: Springer-Verlag, 1989.
  • 3Olver P J. Applications of Lie Groups to Differential Equations. 2nd ed. New York: Springer-Verlag,1993.
  • 4Bluman G W, Kumei S. Symmetrics and Differential Equations. New York: Springer-Verlag, 1989.
  • 5Guan Keying, Liu Sheng, Lei Jingzhi. The Lie algebra admitted by an ordinary differential equation system. Ann of Diff Eqs, 1998, 14(2): 131- 142.
  • 6Yusuke Hagihara. Celestial Machanics, Vol I. Dynamical Principles and Transformation Theory. Boston:The Massachusettes Institute of Technology Press, 1976.
  • 7Cooke R. The Mathematics of Sonya Kovalevskaya. New York: Springer-Verlag, 1984.
  • 8Kovalevsky S. Sur le probleme de la rotayion d'un corps solide autour d'un point fixe. Acta Mathematica,1889, 12: 177-232.
  • 9Arnold V I. Dynamical Systems Ⅲ. New York: Springer-Verlag, 1988. 120.
  • 10Arnold V I, Kozlov V V, Neishtadt A I. Mathematical Aspects of Classical and Celestial Mechanics. 2nd ed. New York: Springer-Verlag, 1997. 120.

共引文献87

同被引文献13

  • 1刘洪伟,管克英.用两单参数李群求3阶自治系统的首次积分[J].应用数学学报,2006,29(3):567-573. 被引量:8
  • 2GUAN KEYING, LIU SHENG,LEI JINZHI. Lie algebra admitted by an ordinary differential equation system[J]. Ann of Diff Eqs, 1998,14(2) : 131-142.
  • 3Anold V 1. Mathematical Method of Classical Mechanics, 2nd ed. New York: Springer-Verlag, 1989.
  • 4Bluman W G, Anco C S. Symmetry and Integration Methods for Differential Equations. New York: Springer- Verlag, 2002.
  • 5Olver P J. Application of Lie Groups to Differential Equation, 2nd ed. New York: Springer-Verlag, 1993.
  • 6Guan K, Liu S, Lei J. The Lie Algebra Admitted by an Ordinary Differential Equation System. Annals of Differential Equations, 1998, 14(2): 131-142.
  • 7Guan K. The Module Structure of the Infinite-dimensional Lie Algebra Attached to a Vector Field. New York: Nova Publishers, 2009, 139-167.
  • 8Hu Y, Xue C. One-parameter Lie Groups and Inverse Integrating Factors of n-th Order Autonomous Systems. Journal of Mathematical Analysis and Applications, 2012, 388:617-626.
  • 9刘洪伟.用n-1个单参数李群求n阶自治系统的首次积分[J].应用数学学报,2009,32(4):589-594. 被引量:3
  • 10刘胜,管克英.二阶非自治系统首次积分的一种构造方法[J].内蒙古大学学报(自然科学版),1999,30(2):135-139. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部