摘要
本文针对Taylor-Galerkin有限元法的两个基本假设进行讨论.改进了原假设,仅以一个假设作为出发点,得到了广义的有限元离散公式.对具体流函数—涡量方程的求解进行了改进的Taylor-Galerkin有限元分析.提出了组合式的求解方法,使求解过程更为合理.算例计算表明,该方法的效果是很好的.
Two basic Hypothesises of Tayior-Gaierkin finite element method are studied in this paper. One of them -which i.s unreasonable is redefined. The only 'hypothesis becomes the s'.andpoiiU of generalized finite element. We use this idea to analyze stream fuu,i.ionequations with the modified Taylor-Galerkin finite element nv-thod, and.give ilw solving tne.lhpd, vyhicri makf.s the solving process more teasonaLlu than cv-biioie. Sjveral. eompulaLioEal examples reveal that the results of I hi.1-- new m:i.iiod is satisfied.
出处
《应用数学和力学》
CSCD
北大核心
1993年第12期1115-1120,共6页
Applied Mathematics and Mechanics
关键词
有限元
流函数
T-G有限元
流体力学
hypothesis,finite element method, stream function, iteration